
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting.
Both can be found through links on the ENTCS Web Page.

Executable Biochemical Space
for Specification and Analysis of Biochemical Systems

Matej Troják, David Šafránek, Luboš Brim

Systems Biology Laboratory, Masaryk University, Brno, Czech Republic

Jakub Šalagovič, Jan Červený

Global Change Research Centre AS CR, v. v. i., Brno, Czech Republic

Abstract

We present the second generation of a rule-based language called Biochemical Space Language (BCSL) that combines the advantages of
different approaches and thus makes an effort to overcome several problems with existing solutions. The key aspect of the language is
the level of abstraction it uses, which allows scalable and compact hierarchical specification of biochemical entities. This abstraction
enables unique analysis techniques to reason about properties of models written in the language on the semantic and syntactic level.

Keywords: rule-based modelling, formal specification, static analysis

1 Introduction

Modelling complex systems in systems biology has to be conducted at several levels of abstraction that reflect
well the known information [14]. At every level, the system has to be described rigorously in a formal lan-
guage that allows avoiding misunderstood and ambiguous interpretations. The more complex the system is,
the harder it is to describe it rigorously while not losing human-readability and compactness of the descrip-
tion at the same time. A modern biochemical system specification language that can be sufficiently employed
in systems biology practice has to be hierarchical and executable. Hierarchical description allows expressing
individual system components at different levels of detail. Since not all biochemical structures are known in
detail, the language has to support the expression of partial knowledge. On the other end, executability al-
lows automatic assigning the description with appropriate formal (mathematical or programming) structures
that enable simulation and exhaustive analysis of desired properties or revealing bugs in the description.

Traditional approaches used to describe biochemical systems are: (i) a chemistry approach employing “me-
chanical” descriptions by chemical reactions or (ii) a mathematical approach using ordinary differential equa-
tions or other mathematical formalisms. The problem of both approaches is scalability in the description of
the model and in its execution: even when the formulation of a model does not run into scalability issues,
the execution or simulation might still be infeasible [24]. To that end, computer science offers a computational
approach based on abstract languages with a variety of rigorous executable semantics. Relations among these
approaches have been discussed in [4] and [12].

A promising computational approach is provided by rule-based modelling [7,9] and process-algebraic frame-
works [4,5,23]. Rule-based models make a natural extension of the mechanical reaction-based models used
in chemistry. Instead of operating with objects, rule-based frameworks operate with types that allow avoiding
the combinatorial explosion that occurs when underlying objects are specified directly. The semantics of the

Contact: xtrojak@fi.muni.cz or safranek@fi.muni.cz
This work has been supported by the Czech Science Foundation grant 18-00178S and Czech National Infrastructure grant LM2015055.

©2018 Published by Elsevier Science B. V.

http://entcs.org
mailto:xtrojak@fi.muni.cz
mailto:safranek@fi.muni.cz

Troják et al.

model is given in terms of rules defined on given types. An important advantage of rule-based approach is
that mathematical models can be automatically generated from them. In particular, instead of relying on a
single mathematical formalism, different mathematical models can thus be obtained for a given model (e.g.,
ODEs [3], PDEs [1], chemical master equation or continuous-time Markov chains [19,25], reaction-diffusion
systems [26], etc.).

Although rule-based models make a great alternative to mathematical models, they are not yet sufficiently
used in practice. The reason is that existing formalisms rely on cryptic (symbolic) syntax and they are limited
to a specific subset of interactions or are too abstract: BNGL [9] and Kappa [7] target protein-protein binding;
BioSPI [23] and SPiM [22] use very elemental asymmetric binary synchronisation primitives; BioPEPA [5]
adapts process-algebraic framework to chemical reactions while relaxing the compactness of combinatorial
interactions; Chromar [13] utilises functional programming. These languages can be thus understood as low-
level formalisms that allow precise formal description and analysis of biological processes. Several high-level
frameworks have been developed based on principles of these formalisms: rxncon [24] focuses on regulatory
interactions and allows construction of rules from experimental evidence, LBS [21] and LBS-κ [20] enrich
rule-based framework with modularity, PySB [17] embeds Kappa and BNGL into Python, MetaKappa [6] ex-
tends Kappa language by hierarchical inheritance of agent sites, BioCHAM [2] explicitly separates rules from
their mathematical semantics. None of these frameworks provides a sufficiently universal solution for de-
scription and annotation of heterogeneous biophysical processes integrated at the cellular level. Apparently,
different approaches need to be combined accordingly to make a universal hierarchical modelling and anno-
tation base that supports executability. The work presented in [18] targets bringing annotation standards into
rule-based frameworks.

On the other end, SBML multi [29] transfers rule-based description into a universal XML format that
fixes the hierarchical structure of objects and modularity of rules. It moves the rule-based paradigm towards
a standard technique of describing biological systems. However, it does not directly solve the executability
and advanced analysis issues that make an important aspect of rule-based frameworks.

Our long-term aim is the development of a general modelling framework [16,27]. Together with general
annotation format Biochemical Space [15], it respects the need for maintaining existing ODE models but al-
lows to align them with a mechanistic rule-based description that is understandable by biologists, compact
in size, executable in terms of allowing basic analysis tasks ensuring consistency of the description, and pro-
vides links to existing bioinformatics annotation databases. Such a comprehensive solution allows supporting
modellers effort in building mathematical models that have clear biochemical meaning and can be easily inte-
grated. Moreover, mechanistic descriptions can be later used as computational models having all advantages
of rule-based modelling. To that end, we have pioneered an idea of combining advantages of rule-based mod-
elling with the simplicity of chemical reactions by introducing the first prototype of a high-level rule-based
language called Biochemical Space Language (BCSL), introduced in [8]. The language has been defined at the
top of Kappa. BCSL aims at higher-level abstraction than Kappa that focuses on morphisms between protein
binding sites. Therefore the Kappa-based formulation of BCSL has limited expressiveness and does not fit
well the aims of our framework. Additionally, Kappa does not provide hierarchical description which is one
of the key aspects of BCSL.

In this paper, BCSL is redefined and significantly improved with respect to the primary prototype pre-
sented in [8]: (i) hierarchical and composable object types and rules are defined without the need to encode
them in an existing rule-based framework thus avoiding any loss of information, (ii) executable semantics of
rules is defined directly at the level of the language thus making a base for unique analysis tasks specific for
the considered level of abstraction, (iii) software tool is available to maintain and analyse BCSL specifications
– BCSgen 1 . The new version of BCSL emphasises the following aspects: (i) human-readability (easy to read,
write, and maintain), (ii) executability (formal executable semantics is defined allowing efficient static anal-
ysis and consistency checking), (iii) universality (principally different cellular processes can be sufficiently
combined in a single specification), (iv) scalability (combinatorial explosion of the description is avoided),
(v) hierarchy (object types are described hierarchically allowing compositional assembly from simpler struc-
tures). Moreover, we provide several static analysis techniques which take the advantage from the specific
level of abstraction. They are aimed primarily at consistency checking, model reduction and reachability
analysis. Particularly, rule redundancy elimination allows detecting unnecessary rules in the models, context-
based reduction and static non-reachability analysis uniquely deal with non-reachability in terms of preventing
expensive transition system enumeration in cases when it is not necessarily needed. These techniques are
demonstrated on a model of fibroblast growth factor (FGF) signalling pathway and show practical impact in
the field of static analysis.

1 https://github.com/sybila/BCSgen

2

https://github.com/sybila/BCSgen

Troják et al.

2 Formal definition of Biochemical Space Language

In this section, we formally define Biochemical Space Language. At first, we define all the required objects
(so called agents) and interactions among them (so called rules; for an example, see Figure 1), then we define
syntax of the language and semantics of the BCSL models.

S{u}::KaiC ::KaiBC ::cyt

Serine residue
(unphosphorylated)

KaiC protein

⇒ S{p}::KaiC ::KaiBC ::cyt

Serine residue
(phosphorylated)

KaiBC dimer

cytosol

Fig. 1. An example of a rule. The rule describes the change of serine (S) amino acid residue from an unphosphorylated to phosphorylated
state. Additionally, such phosphorylation can happen only when the serine is part of a KaiC protein, which occurs inside a protein
complex of KaiC and KaiB proteins. The entire process is allowed only inside of cytosol (cyt) compartment.

2.1 Formal preliminaries

Before we proceed, we provide some basic definitions and notations in order to build the formal definition
for the language.

Definition 2.1 (Multiset) Multiset Ω is a pair (A,m) where A is a set and m : A →N is a function from A to
the set of natural numbers. The set A is called the reference set of elements. For each element a in A the
multiplicity (that is, number of occurrences) of a is the number m(a).

Notation 2.2
• Let S be a set. By ΩS we denote the set of all possible finite multisets (A,m) such that A ⊆ S .
• Let O = (o1, . . . , on) be a tuple.
· By Ω(O) we denote a multiset constructed from tuple O.
· By σ (O) we denote a set of all possible permutations of length n of the tuple O.

• By |Y | we denote (i) dimension of tuple Y or (ii) cardinality of (multi)set Y .

Definition 2.3 (Labelled transition system) Labelled transition system (LTS) L is a quadruple (S,A,T ,s0) where
S is a set of states, A is a set of labels, T ⊆ S ×A× S is a transition relation, and s0 ∈ S is an initial state.

Definition 2.4 (Path in LTS) Let L = (S,A,T ,s0) be an LTS. We define path as a sequence of states s1s2s3 . . .
such that ∀si ,si+1 : (si ,a,si+1) ∈ T for some a ∈ A.

Definition 2.5 (Tuples concatenation) Let X = (x1, . . . ,xn),Y = (y1, . . . , ym) be two tuples for some n,m ∈ N.
Concatenation of two tuples, written X ++Y , is defined as: X ++Y = (x1, . . . ,xn, y1, . . . , ym).

Definition 2.6 (Sum of concatenations) Let T = (T1,T2, . . . ,Tn) be sequence of tuples for some n ∈N. Concate-
nation of sequence of tuples ++ni=1Ti is defined as: ++ni=1Ti = T1 ++ T2 ++ . . .++ Tn

2.2 Objects definition

Let NA,NT ,Nδ,Nc be mutually exclusive finite sets of atomic names, structure names, states, and compart-
ments respectively. Moreover, ε is a reserved symbol and does not belong to any of these sets.

For better readability, we provide examples of syntax for the most important objects with their definitions.
The formal definition of syntax and the relation to the objects are given below (Sections 2.3 and 2.4).

2.2.1 Signature

Definition 2.7 (Signature) Atomic signature is a function ΣA : NA → 2Nδ that associates each atomic name to
a set of state names. Similarly, structure signature is a function ΣT : NT → 2NA that associates each structure
name to a set of atomic names.

3

Troják et al.

Signatures define a set of allowed states for an atomic name and an allowed set of atomic names for
a structure name. For example,

{
S→ {u,p}, Q→ {a, i}

}
is an atomic signature and

{
KaiC→ {S,Q},KaiB→∅

}
is a structure signature.

2.2.2 Atomic agent

Definition 2.8 (Atomic agent) An atomic agent A is a pair (η,δ) where η ∈ NA is a name and δ ∈ Nδ ∪ {ε} is
a state. The name and the state of the agent A is usually denoted by η(A) and δ(A), respectively.

Atomic agents are the simplest objects used for describing biological entities. Each atomic agent has its
name and state. Allowed set of admissible states for the atomic agent (with additional empty ε state) is given
by signature ΣA(η).

Definition 2.9 (Equality relation of atomic agents) Let A, A′ be atomic agents. A is equal to A′ , written A = A′ , iff
η(A) = η(A′)∧ δ(A) = δ(A′).

Intuitively, the defined equality on atomic agents is an equivalence relation.

Notation 2.10 We use the symbol A to denote the universe of all possible atomic agents.

Atomic agents are usually used to express small biological entities which can change their state, for ex-
ample, amino acids, small inorganic molecules, etc. Examples of atomic agents are A1 = (S,u), written as
S{u}, and A2 = (Q,ε), written as Q{ε}. Note the meaning of ε is the state is unknown or not important to be
considered in a given context.

Definition 2.11 (Compatibility of atomic agents) Let A1, A2 be atomic agents. The agent A1 is compatible with
agent A2, written A1 C A2, if either A1 = A2 or η(A1) = η(A2)∧ δ(A1) = ε.

Compatibility of atomic agents is a key property defined between agents. An agent is compatible with
anothet agent if they have the same name and they are in the same state or the first agent is in the unknown
state. It provides a formal way to compare which agent is more detailed, i.e. its state is more specified.

Definition 2.12 (Fully specified atomic agent) Let A ∈A be an atomic agent. We say the agent A is fully specified,
written 4A, iff ∀A′ ∈A such that A′ , A : ¬(A′ C A).

2.2.3 Structure agent

Definition 2.13 (Structure agent) We define a structure agent T as a pair (η,γ) where η ∈ NT is a name and
γ ⊆A is a set of atomic agents called partial composition such that ∀A,A′ ∈ γ : η(A) , η(A′). The name and the
partial composition of the agent T is usually denoted by η(T) and γ(A), respectively.

A structure agent represents a biochemical object that is composed of several known atomic agents while
we know that a composition is abstract and not necessarily complete. To incorporate this kind of abstraction
into our language, a structure agent is defined to be labelled with a unique name and a set of atomic agents.
This set is restricted according to the given structure signature with the same name as the structure agent.

Definition 2.14 (Equality relation of structure agents) Let T,T′ be structure agents. T is equal to T′ , written
T = T′ , iff η(T) = η(T′)∧γ(T) = γ(T′).

Intuitively, the defined equality on structure agents is an equivalence relation. The key construct of a
structure agent is partial composition defined as a set of atomic agents which are considered to be relevant
parts of the structure agent. We allow this set to be empty with the meaning of a biological structure for
which we do not know its composition.

Notation 2.15 We use symbol T to denote the universe of all possible structure agents.

A typical example of a structure agent is a protein where the atomic agents are amino acids that are of
interest in the particular setting. Imagine that in our modelled system only three out of a few hundred amino
acids are able to undergo some post-translational modifications, such as phosphorylation, metylation etc. It
is suitable to model only these three amino acids instead of entire primary structure of the protein. Examples
of structure agent are T1 = (K, {(S,p), (Q,i)}), written as K(S{p},Q{i}), and T2 = (K, {(Q,a)}), written as K(Q{a}).

We define difference on the level of partial compositions of structure agents, which is necessary for defi-
nition of semantics below.

Definition 2.16 (Difference of partial compositions) Let γ,γ ′ be partial compositions. We define difference of
partial compositions γ 	γ ′ = {A | A ∈ γ ∧ A < γ ∩γ ′} where γ ∩γ ′ = {A | A ∈ γ ∧∃A′ ∈ γ ′ : η(A′) = η(A)}.

4

Troják et al.

Definition 2.17 (Compatibility of structure agents) Let T1,T2 be structure agents. The agent T1 is compatible
with agent T2, written T1 C T2, iff either T1 = T2 or η(T1) = η(T2)∧∀A1 ∈ γ(T1) ∃A2 ∈ γ(T2) : A1 C A2.

Structure agents are compatible if it is possible to create pairs from atomic agents of composition of the
first agent with the second ones such that these atomic agents are all unique. For such pairs, the agents in each
pair must be compatible. It provides a formal way to compare which agent is more specified, i.e. particular
states of atomic agents in partial composition are given or not.

Definition 2.18 (Fully specified structure agent) Let T ∈ T be a complex agent. We say the agent T is fully
specified, written 4T, iff ∀T′ ∈T such that T′ , T : ¬(T′ C T).

2.2.4 Complex agent
A complex agent represents a non-trivial composite biochemical object that is inductively constructed from
already known biological objects. In rule-based languages, this is usually defined by introducing bonds be-
tween individual biochemical objects. In BCSL we abstract from the detailed specification of bonds and we
rather assume a complex as a coexistence of certain objects in a particular group. Moreover, a complex agent
resides in a compartment which gives it a spatial position.

Definition 2.19 (Complex agent) We define a complex agent X as a pair (µ,com) where µ ∈ (A∪T)n is a sequence
of agents, com ∈ Nc is a compartment, and n ∈N. The sequence and the compartment of the agent X is usually
denoted by µ(X) and com(X), respectively.

The key element of a complex agent is sequence inductively constructed from existing agents. In contrast
to partial composition in structure agent, we allow replication at the level of sequence (an agent of a certain
name can appear more than once in a sequence). The order in the sequence is necessary to uniquely identify
agents which are equal. On the other hand, when comparing two sequences, we do it regardless the order.

Definition 2.20 (Equality relation of complex agents) Let X,X′ be complex agents. X is equal to X′ , written X = X′ ,
iff com(X) = com(X′)∧Ω(µ(X)) = Ω(µ(X′)).

Intuitively, the defined equality on complex agents is an equivalence relation. Example of a complex agent
is X =

(
((K, {(S,p), (Q,i)}), (S,p)), cell

)
, written as K(S{p},Q{i}).S{p} :: cell.

Notation 2.21 We use the symbolX to denote the universe of all possible complex agents.

The complex agents encapsulate other agents – an atomic or a structure agent cannot exist on its own (the
case when only one item is in its sequence can occur). This guarantees each atomic and structure agent has
indirectly given spatial location – the compartment.

Definition 2.22 (Compatibility of complex agents) Let X1, X2 be complex agents. The complex agent X1 is
compatible with complex agent X2, written X1 C X2, iff either X1 = X2 or com(X1) = com(X2) ∧ ∃µ′ ∈ σ (µ(X2))
such that ∀i ∈ [1,n] : µi(X)Cµ′i , where n is length of sequence which is the same for both sequences.

Complex agents are compatible if there exists a permutation of the sequence of the first agent such that
individual agents on the same position in both sequences are compatible. It provides a formal way to compare
which agent is more specified.

Definition 2.23 (Fully specified complex agent) Let X ∈ X be a complex agent. We say the agent X is fully
specified, written 4X, iff ∀X′ ∈X such that X′ , X : ¬(X′ C X).

It worth noting that the complexes have no binding topology. While it provides many advantages, specifi-
cally when it comes to combinatorial explosion, it also has several drawbacks. The most important one is that
we are not able to express structural modifications on the level of complexes. These have to be encoded using
states.

2.2.5 Rule
Let us have a simple example of a rule:

K(S{u}).B(∅) :: cyt⇒ K(S{p}) :: cyt +B(∅) :: cyt.

This rule dissociates a complex of K and B (both structure agents) to two separate agents while the structure
agent K is changing the state of its atomic agent S from u to p. In order to describe the rule formally, we
need to capture the relation between so-called left-hand side (the part before ⇒ symbol) and right-hand side
(the part after⇒ symbol). It is achieved by indexing the individual positions in the rule and creating index
maps between them.

5

Troják et al.

Definition 2.24 (Rule) We define a rule R as a quintuple (χ,ω, ι,ϕ,ψ) where:
• χ ∈Xn is a sequence of complex agents,
• ω ∈ (A∪T)m is a sequence of atomic and structure agents,
• ι ∈ {0, . . . ,n} is an index determining the end of the left-hand side (LHS) of χ,
• ϕ ∈Nm is an index map from ω to χ,
• ψ ∈ (({−} ∪N)2)n is an index map from LHS to RHS

where n,m ∈N, LHS = (χ1, . . . ,χι) is the left-hand side, and RHS = (χι+1, . . . ,χn) is the right-hand side.

The reason for this particular definition is that it is necessary to capture the relationship between the left-
hand side and the right-hand side of the rule. This is done by enumerating all atomic and structure agents
ω from sequence of complex agents χ. The index map ψ between the agents in ω determines pairs of agents
from the left-hand side and the right-hand side which correspond to each other. It is possible that there are
agents which do not have a pair (denoted by −) in the situation when the rule is modelling inflow from (resp.
outflow to) the system. Another index map ϕ serves for relating agents from ω back to the original sequence
of complexes χ. Finally, by index ι we determine the end of the left-hand side of the rule. Note the index is
zero in the situation when there are no agents on the left-hand side.

Notation 2.25 We use symbol R to denote the universe of all possible rules.

Example of a rule is R = (χ,ω, ι,ϕ,ψ) where:

• χ =

(
((K, {(S,u)}), (B,∅)), cyt

)
,(

((C,∅), (D,i)), cyt
)
,(

((A,ε)), cyt
)
,(

((K, {(S,p)}), (B,∅), (C,∅)), cyt
)
,(

((D,a), (A,ε)), cyt
)
,(

((H,u)), cyt
)

• ω =

(K, {(S,u)}), (B,∅), (C,∅),
(D,i), (A,ε), (K, {(S,p)}),

(B,∅), (C,∅), (D,a), (A,ε), (H,u)

• ι = 3
• ϕ = (2,4,5,8,10,11)
• ψ = [(1,6); (2,7); (3,8); (4,9); (5,10); (−,11)]

written as:

K(S{u}).B(∅) :: cyt +C(∅).D{i} :: cyt +A{ε} :: cyt⇒ K(S{p}).B(∅).C(∅) :: cyt +D{a}.A{ε} :: cyt +H{u} :: cyt
Not every rule makes sense. For example, a rule where not a single agent is changed or a rule where the

relation between the left-hand and the right-hand side would not be clear. In order to avoid such cases we
need to specify when a rule is well-formed, i.e. it makes sense semantically.

Definition 2.26 (Well-formed rule) Let R be a rule and i, j ∈N. We say the rule R = (χ,ω, ι,ϕ,ψ) is well-formed
if all the following conditions hold:

(i) at least one of conditions holds:
(a) ∃(i, j) ∈ ψ :ωi ,ωj ,
(b) |LHS(R)| , |RHS(R)|,
(c) ∃i ∈ [1, ι] : com(χi) , com(χι+i);

(ii) ∀(i, j) ∈ ψ : η(ωi) = η(ωj);

(iii) ∀(−, i) ∈ ψ : 4ωi .

A rule is well-formed if it holds conditions given in Definition 2.26. The conditions basically claim that
an agent has to change during the rule application. This is ensured by condition (i), where there are three
options: (a) at least one pair of agents from LHS and RHS of the rule is different; (b) the lengths of the LHS
and RHS are different, i.e. either a new agent is created or complex is formed/dissociated; (c) a compartment
is changed. Any combination of these sub-conditions is allowed. The second condition (ii) guarantees that
the pairs of structure and atomic agents in ω of the rule have the same name. Please note the conditions (i)
and (ii) do not apply to those agents in ω which do not have a pair on the other side of the rule. Finally, the
condition (iii) claims that if there is an agent which does not have defined a pair via index map ψ (denoted
by −), it is required to be a fully specified agent (but only in case of agent creation, it is not necessary for agent
degradation).

6

Troják et al.

2.3 Syntax

In this section, we define the syntax for the language, i.e. how we usually write it in order to make the notation
easily writeable and readable. It corresponds to the examples given while defining agents and rules above.

Definition 2.27 (Grammar)

Atomic expression Structure expression Complex expression

α ::= η{s} | η{ε} τ ::= η(γ) | η(∅) Γ ::= β1 βk :: c

η ::= n ∈ NA γ ::= α1, . . . ,αk βi ::= α | τ
s ::= n ∈ Nδ η ::= n ∈ NT c ::= n ∈ Nc

Rule expression % ::= Γ1 + . . .+ Γn⇒ Γn+1 + . . .+ Γm

where m,n ∈N0 ∧m > n and k ∈N.

2.4 Translation function

Once we defined BCSL agents and rules and syntax for the language, we need to connect them in order to
give semantic meaning to a model written in the syntax. For this purpose, we define translation function F

(Definition 2.28). It is defined recursively according to the expression given as an argument.

Definition 2.28 (Translation function) We define translation function F according to the expression given in
double square brackets J . . . K as follows:

FJ η{ε} K = (η,ε) ∈A
FJ η{s} K = (η,s) ∈A
FJ η(∅) K = (η,∅) ∈T

FJ η(a1, . . . ,ak) K =
(
η, { FJa1K, . . . ,FJakK }

)
∈T

FJ α1 αk :: c K =
(

(FJ α1 K, . . . ,FJ αk K), c
)
∈X

FJ Γ1 + . . .+ Γn⇒ Γn+1 + . . .+ Γm K = (χ,ω, ι,ϕ,ψ) ∈R such that:

• χ =
(
FJ Γ1 K, . . . ,FJ Γn K,FJ Γn+1 K, . . . ,FJ Γm K

)
,

• ω = ++|χ|i=1µ(χi),
• ι = n,

• ϕ = (J1, . . . , Jm) where Jk =
k∑
i=1
|µ(χi)|,

•

{ (i, j) | i ∈ [1,ϕι]∧ j ∈ [ϕι + 1, |ω|]∧ |i − j | = ϕι } ∪
ψ = { (i,−) | i ∈ [k,ϕι]∧ k = |ω| −ϕι + 1 | } ∪

{ (−, j) | j ∈ [k, |ω|]∧ k = 2×ϕι + 1 }
where ψ is defined together with an ordering such that
symbol ′−′ > k for every k ∈N and all descending inter-
vals in definition of ψ are ignored.

Note that the translation function works only on expressions defined in Definition 2.27. The function
recursively creates objects from given expressions. Every rule expression is first decomposed to LHS and
RHS, and consequently each agent expression is translated to an object. The appropriate index maps are
created from sequence of complexes χ and sequence of atomic and structure agents ω.

2.5 BCSL model

We proceed to the BCSL model definition. We always consider an initialised model, which means the defi-
nition contains an initial state of the system (a solution, Definition 2.29). The definition of BCSL model also
contains rules and signatures.

Definition 2.29 (Solution) Solution is a multiset S ∈ΩX such that A is the reference set of S and ∀X ∈ A : 4X.

Definition 2.30 (BCSL model) We define BCSL modelM as a quadruple (R,ΣA,ΣT,S) whereR is a set of rules,
ΣA is an atomic signature, ΣT is a structure signature, and S is an initial solution.

7

Troják et al.

A BCSL model is formed by a set of rulesR, which define the behaviour of the model. The initial solution
S defines the state of the model in the beginning. Atomic signature ΣA defines allowed states for all atomic
agents used in the rules. Finally, structure signature ΣT defines allowed atomic agents for all structure agents
used in the rules.

2.6 Matching

At this point, we define matching, which will be used in the definition of semantics for a BCSL modelM.

Definition 2.31 (Matching) Let R = (χ,ω, ι,ϕ,ψ), r = (χ′ ,ω′ , ι′ ,ϕ′ ,ψ′) be two rules, S ∈ΩX be a solution, and
i, j ∈N. Let |= ⊆R×ΩX ×R be the matching relation such that a tuple (R,S ,r) ∈ |=, written R |=r S , iff

(i) ι = ι′ ∧ϕ = ϕ′ ∧ψ = ψ′ ,
(ii) |χ| = |χ′ | ∧ |ω| = |ω′ |,

(iii) ∀i ∈ [1, |χ|] : χ′i Cχi ,

(iv) Ω(LHS(r)) = S ,

(v) ∀(i, j) ∈ ψ :

(a) ωi ∈A⇒
ω′i =ω′j if ωi =ωj
ωi =ω′i ∧ωj =ω′j if ωi ,ωj

(b) ωi ∈T⇒ γ(ω′i)	γ(ωi) = γ(ω′j)	γ(ωj).

Remark 2.32 Note the rule r from the tuple (R,S ,r) ∈ |= is so-called reaction, which is characterised as an in-
stance of the rule R. For every rule in a model, it is possible to enumerate all potential reactions and this way
convert a rule-based model to a reaction-based model.

2.7 Semantics

Definition 2.33 (Replacement) Let→ ⊆ΩX×R×ΩX be the replacement relation such that a tuple (S ,R,S ′) ∈ →,
written S →R S ′ , iff ∃r ∈R ∃x ⊆ S such that R |=r x∧ S ′ \ (S \ x) = Ω(RHS(r)).

Replacement relation defines how a solution is transformed according to a given rule. For a BCSL model
M, rules yield a labelled transition system LT S(M) between solutions containing an edge S →R S ′ . Note that
we can achieve the equivalent behaviour if we first generate all possible reactions from the rules and apply
replacement with them instead (a rule is just a generalised set of reactions).

3 Syntactic extensions

In this section, we define several syntactic extensions which increase the readability of the rule expressions.
Note that each rule expression in an extended form can always be translated to basic form defined above
(Section 2.3). All rule expressions containing the following extensions must be converted to basic form before
the semantics can be applied. For better demonstration, we provide a running example, which will go through
all syntactic extensions (Running example 3.1). Please note there is no biological sense of the example model,
its only purpose is to effectively demonstrate all defined syntactic extensions.

Running example 3.1 (The example modelM)

(i) KaiC(S{u},T {ε}).KaiC(S{ε},T {ε}).KaiC(S{ε},T {ε}) :: cyt⇒ KaiC(S{p},T {ε}).KaiC(S{ε},T {ε}).KaiC(S{ε},T {ε}) :: cyt

(ii) KaiC(S{u},T {ε}).KaiB(∅) :: cyt⇒ KaiC(S{p},T {ε}).KaiB(∅) :: cyt

(iii) KaiC(S{ε},T {ε}) :: cyt +KaiC(S{ε},T {ε}) :: cyt +KaiC(S{ε},T {ε}) :: cyt⇒ KaiC(S{ε},T {ε}).KaiC(S{ε},T {ε}).KaiC(S{ε},T {ε}) :: cyt

(iv) KaiC(S{ε},T {ε}).KaiC(S{ε},T {ε}).KaiC(S{ε},T {ε}) :: cyt⇒ KaiC(S{ε},T {ε}) :: cyt +KaiC(S{ε},T {ε}) :: cyt +KaiC(S{ε},T {ε}) :: cyt

ΣA =
{
S→ {u,p},T → {a, i}

}
ΣT =

{
KaiC→ {S,T },KaiB→∅

}
We omit the initial state definition just for simplicity of the example since all the extensions concern only rule
expressions.

3.1 Partial composition context elimination

It is possible to omit all atomic expressions with unspecified state ε from partial compositions of structure
agents (Running example 3.2). Such agent expressions do not give any additional information and whole
partial composition can be reconstructed from the given signature.

8

Troják et al.

Running example 3.2 (The example modelM)

(i) KaiC(S{u}).KaiC(∅).KaiC(∅) :: cyt⇒ KaiC(S{p}).KaiC(∅).KaiC(∅) :: cyt
(ii) KaiC(S{u}).KaiB(∅) :: cyt⇒ KaiC(S{p}).KaiB(∅) :: cyt

(iii) KaiC(∅) :: cyt +KaiC(∅) :: cyt +KaiC(∅) :: cyt⇒ KaiC(∅).KaiC(∅).KaiC(∅) :: cyt
(iv) KaiC(∅).KaiC(∅).KaiC(∅) :: cyt⇒ KaiC(∅) :: cyt +KaiC(∅) :: cyt +KaiC(∅) :: cyt

Additionally, this extension can go even further by omitting the (∅) part from structure agents completely
(Running example 3.3). Since we have the structure signature ΣT defined, we can unambiguously determine
which names belong to structure agents and this syntactic part can be easily reconstructed.

Running example 3.3 (The example modelM)

(i) KaiC(S{u}).KaiC.KaiC :: cyt⇒ KaiC(S{p}).KaiC.KaiC :: cyt
(ii) KaiC(S{u}).KaiB :: cyt⇒ KaiC(S{p}).KaiB :: cyt

(iii) KaiC :: cyt +KaiC :: cyt +KaiC :: cyt⇒ KaiC.KaiC.KaiC :: cyt
(iv) KaiC.KaiC.KaiC :: cyt⇒ KaiC :: cyt +KaiC :: cyt +KaiC :: cyt

This syntactic extension brings a lot of readability to the syntax while preserving all information in the
context of the modelM.

3.2 Complex signature

We extend the model definition by complex signature ΣX (Running example 3.4). In this signature, there are
defined aliases for valid complex expressions. Then, the original complex expressions are substituted by the
aliases.

Running example 3.4 (The example modelM)

Definition of complex signature ΣX =

 KaiC3 :: cyt→ KaiC.KaiC.KaiC :: cyt,

KaiBC :: cyt→ KaiC.KaiB :: cyt

(i) KaiC(S{u}).KaiC.KaiC :: cyt⇒ KaiC(S{p}).KaiC.KaiC :: cyt

(ii) KaiC(S{u}).KaiB :: cyt⇒ KaiC(S{p}).KaiB :: cyt
(iii) KaiC :: cyt +KaiC :: cyt +KaiC :: cyt⇒ KaiC3 :: cyt
(iv) KaiC3 :: cyt⇒ KaiC :: cyt +KaiC :: cyt +KaiC :: cyt

The usage of the complex signature has its limitations. Once a context is specified, the alias cannot be
used. We will resolve this problem in the following extensions.

3.3 Directions

We allow rule expressions to be bi-directional – it is just a shortcut for two rule expressions and it can be
converted to the basic rule expression form. A rule expression % : l ⇔ r can be written as two rule expressions
%1 : l ⇒ r and %2 : r ⇒ l (Running example 3.5).

Running example 3.5 (The example modelM)

(i) KaiC(S{u}).KaiC.KaiC :: cyt⇒ KaiC(S{p}).KaiC.KaiC :: cyt
(ii) KaiC(S{u}).KaiB :: cyt⇒ KaiC(S{p}).KaiB :: cyt

(iii) KaiC :: cyt +KaiC :: cyt +KaiC :: cyt⇔ KaiC3 :: cyt

Definition of rules (iii) and (iv) from Running example 3.4 was replaced by one bi-directional rule (iii) in
Running example 3.5.

3.4 Stoichiometry

For a rule expression of form:

β1 :: c+ β2 :: c+ . . .+ βn :: c⇒ β1.β2.βn :: c

we can reorder both sides such that we get non-crossing partition P = B1/B2/ . . . /Bk with k ≤ n from its indices
[1, . . . ,n] such that: ∀B ∈ P ∀β,β′ ∈ B : β = β′ and ∀B,B′ ∈ P ∀β ∈ B ∀β′ ∈ B′ : β , β′ such that B , B′ .

9

Troják et al.

For the left-hand side β1 :: c + β2 :: c + . . . + βn :: c of the reordered rule expression we can replace all
rule expressions [βi , . . . ,βj] which belong to the same non-crossing partition B by notation ‘k β′ , where β is a
representative from βi , . . . ,βj (they are all equivalent) and k is the number of the expressions in partition B
(Running example 3.6). Note that this process is fully reversible – we can simply enumerate all expressions
for each partition.

Running example 3.6 (The example modelM)
Definition of rule expressions:

(i) KaiC(S{u}).KaiC.KaiC :: cyt⇒ KaiC(S{p}).KaiC.KaiC :: cyt
(ii) KaiC(S{u}).KaiB :: cyt⇒ KaiC(S{p}).KaiB :: cyt

(iii) 3 KaiC :: cyt⇔ KaiC3 :: cyt

Definition of rule expression (iii) from Running example 3.5 was replaced by a new rule expression using
stoichiometry.

3.5 Locations

The localisation operator is intended for allowing an alternative way of expressing the hierarchically con-
structed agent expressions (Running example 3.8). The main idea is to allow zooming into individual parts of
complex and structure expressions. For this purpose, we use a :: b notation such that a,b are arbitrary agents
which satisfy one of the conditions given in Definition 3.7.

Definition 3.7 (Location conditions)

(i) A :: T⇔ there exists A′ ∈ γ(T) such that AC A′ ,
(ii) A :: X⇔ there exists A′ ∈ µ(X) such that AC A′ ,

(iii) T :: X⇔ there exists T′ ∈ µ(X) such that TC T′ .

For each pair of agents (α,β) with allowed ‘::’ operator between them, we can construct just one agent β′
without the operator by taking the most left agent α′ from full (resp. partial) composition of the agent β such
that it is compatible with the agent α. Then, agent α′ is merged with agent α and agent β′ is constructed.

Running example 3.8 (The example modelM)

(i) S{u} :: KaiC :: KaiC3 :: cyt⇒ S{p} :: KaiC :: KaiC3 :: cyt
(ii) S{u} :: KaiC :: KaiBC :: cyt⇒ S{p} :: KaiC :: KaiBC :: cyt

(iii) 3 KaiC :: cyt⇔ KaiC3 :: cyt

Definition of rule expressions (i) and (ii) from Running example 3.6 was replaced using locations. The
localisation operator allowed us to additionally use the complex signatures.

3.6 Variables

Rule expressions (i) and (ii) from Running example 3.8 are very similar except for the context of complex
expression they take place in. We can substitute this context with a variable with a given domain.

In a rule expression, one agent expression might be referenced using a variable as a set of rule agent
expressions it can be replaced with (Running example 3.9). Such an agent expression is referenced as ?X.
Moreover, in the case when a ?X is used in a location, it must hold conditions from Definition 3.7.

Each rule expression associated with a variable can be easily written as several rule expressions where
the variable is replaced with agent expression from the set of agent expressions attached to the variable. For
simplicity, only one variable can be used per rule expression.

Running example 3.9 (The example modelM)

(i) S{u} :: KaiC :: ?X :: cyt⇒ S{p} :: KaiC :: ?X :: cyt ; ?X = {KaiC3,KaiBC}
(ii) 3 KaiC :: cyt⇔ KaiC3 :: cyt

Definition of rule expressions (i) and (ii) from Running example 3.8 was replaced as a single rule expression
with a variable.

This is the final syntactic extension. Compared to the original model (Running example 3.1), the resulting
model is more concise and readable.

10

Troják et al.

4 Static analysis

The BCS language offers interesting capabilities to provide several static analysis techniques of given models.
These techniques are based on defined compatibility operator C, which formulates suitable properties for each
type of agent.

Definition 4.1 (Ordering of agents) Let x1,x2 be two arbitrary agents. The compatibility relation induces
partial ordering of agents x1 and x2, written x1 ≤ x2, iff x1 C x2.

Notation 4.2 The universe of complex agentsX with partial order ≤ is a partially ordered setX≤.

The compatibility operator defines a partial order on A,T, and X sets. For our purposes, only partially
ordered set X≤ is relevant. The reason is that complex agents actually encapsulate all the other agent types.
However, partial order of the entire universe of complex agents is not very useful, since most of the agents
cannot be compared by compatibility operator. We are interested in particular subsets where every two
complex agents can be either compared directly or there exists an agent compatible with both of them.

Definition 4.3 (Compatible set) A finite set X ⊆X is a compatible set if:

(i) ∀X1,X2 ∈ X ∃X′ ∈ X : X1 C X
′ ∧ X2 C X

′ ,
(ii) and for each finite set X ′ ⊆X such that X ∩X ′ = ∅ holds: ∀X ∈ X ∀X′ ∈ X ′ : ¬(XC X′ ∨ X′ C X).

Remark 4.4 The compatible set X inherits partial order ofX≤ since it is its subset.

A compatible set X contains partially ordered complex agents such that they all have the same sequences
in terms of agent names. Example of a compatible set is given in Figure 2.

Fig. 2. An example of a compatible set X . The set is formed by a complex in cyt compartment, which has only one structure agent K in
its sequence. The structure agent K has allowed atomic agents T and S in its partial composition. These two atomic agents might occur
in two states – u and p. The set is complete – there are all relevant agents bounded by compatibility operator.

Lemma 4.5 In every compatible set X , there always exists a global supremum sup(X).

Proof. The lemma follows from Definition 4.3 condition (i) which claims that there is a supremum (in terms of
compatibility) for every two complex agents in the compatible set X . Since there exists a supremum for every two
items in the set and the set is finite, there must exist a global supremum for the entire set. �

Lemma 4.6 For every complex agent X there exists exactly one compatible set X ⊆X such that X ∈ X .

Proof. Let us assume a complex agent X belongs to two compatible sets, namely X ∈ X1,X2. From Definition 4.3
condition (i) follows that there exists a X1 ∈ X1 such that XC X1.

Next, the condition (ii) claims that no complex agent from X1 and no complex agent from X2 can be compatible.
Namely, X1 ∈ X1 cannot be compatible with X ∈ X2. However, X and X1 are compatible (XC X1). It follows X < X2,
which is a contradiction. �

In practise, compatible sets can be used for finding non-trivial relationships between the rules (Section 4.1)
and for static analysis on the level of complexes (Section 4.2).

Definition 4.7 (Compatible subset) Let X ⊆X be a compatible set and X ∈ X a complex agent. A setX ⊆ X is
called compatible subset of X w.r.t. X if the following conditions hold:

11

Troják et al.

(i) ∀X′ ∈X : X′ C X∧4X′ ,
(ii) @X′′ ∈ X \X : X′′ C X∧4X′′ .

Compatible subset formally defines all fully specified agents from the compatible set which are compat-
ible with a given member of the set (i.e. there are no compatible agents with them in the set). Note that
for any complex agent X there exists just one compatible subset. The reason follows from Lemma 4.6 and
Definition 4.7.

4.1 Rule redundancy elimination

There might be cases where there are redundant rules in a model (Definition 4.8). These rules do not cause any
semantic difference, only increase the size of the model. We provide a static method how to detect such rules
and eventually delete them from the model. Please note the redundancy is relevant only in the qualitative
context. In the quantitative context, the same rules with different kinetics might have their relevance, yet it
is still useful to detect potential redundancies.

Definition 4.8 (Redundant rule) LetM1 = (R∪{R},ΣA,ΣT,S) andM2 = (R,ΣA,ΣT,S) be BCSL models where R
is a rule such that R <R. The rule R is redundant if LT S(M1) = LT S(M2).

The redundant rule R does not add any semantic information to the model. It generally means the LTSs
produced from the models with and without the rule are equal.

Theorem 4.9 Let R = (χ,ω, ι,ϕ,ψ) and R′ = (χ′ ,ω′ , ι′ ,ϕ′ ,ψ′) be two rules such that |χ| = |χ′ | = n for some n ∈N.
The rule R′ is redundant if ∀i ∈ [1,n] : χ′i Cχi .

Proof. The problem whether the elimination of a redundant rule preserves semantics can be reduced to a simple
question – if it holds for a single pair of complex agents for a position k in the appropriate rules, then it generally
holds for entire rule, because the condition of redundancy holds for each pair of complexes independently.

Assume the complex agents Xk and X′k both belong to the same compatible set X since Xk CX′k , which follows from
the condition of the theorem. We can create subsets X , X ′ ⊆ X for both complex agents respectively (Definition 4.7).
Since the agents are compatible (Xk C X′k), the compatible subset X w.r.t. agent Xk is subset of the compatible subset
X ′ w.r.t. agent X′k (X ⊆ X ′).

Applied generally on the entire rule, the produced set of reactions (using matching relation – Definition 2.31)
from the redundant rule is actually a subset of reactions produced from the non-redundant rule. �

In the proof, we used compatible sets of complex agents and the fact that we can generate reactions from
the rules, while we are actually enumerating all agents from the compatible set which are compatible with
original agent in the rule. This is demonstrated in Example 4.10.

Example 4.10 Redundant rule. Let us consider two rules:

(i) K(S{u}).K :: cell⇒ K(S{p}).K :: cell
(ii) K(S{u},T {i}).K :: cell⇒ K(S{p},T {i}).K :: cell

Considering structure signature ΣT(K) = {S,T } and atomic signatures ΣA(S) = {u,p} and ΣA(T) = {a, i},
the rule (i) produces following set of eight reactions:

K(S{u},T {a}).K(S{u},T {a}) :: cell⇒ K(S{p},T {a}).K(S{u},T {a}) :: cell,

K(S{u},T {a}).K(S{u},T {i}) :: cell⇒ K(S{p},T {a}).K(S{u},T {i}) :: cell,

K(S{u},T {a}).K(S{p},T {a}) :: cell⇒ K(S{p},T {a}).K(S{p},T {a}) :: cell,

K(S{u},T {a}).K(S{p},T {i}) :: cell⇒ K(S{p},T {a}).K(S{p},T {i}) :: cell,

K(S{u},T {i}).K(S{u},T {a}) :: cell⇒ K(S{p},T {i}).K(S{u},T {a}) :: cell,

K(S{u},T {i}).K(S{u},T {i}) :: cell⇒ K(S{p},T {i}).K(S{u},T {i}) :: cell,

K(S{u},T {i}).K(S{p},T {a}) :: cell⇒ K(S{p},T {i}).K(S{p},T {a}) :: cell,

K(S{u},T {i}).K(S{p},T {i}) :: cell⇒ K(S{p},T {i}).K(S{p},T {i}) :: cell

while the rule (ii) produces set of four reactions:

12

Troják et al.

K(S{u},T {i}).K(S{u},T {a}) :: cell⇒ K(S{p},T {i}).K(S{u},T {a}) :: cell,

K(S{u},T {i}).K(S{u},T {i}) :: cell⇒ K(S{p},T {i}).K(S{u},T {i}) :: cell,

K(S{u},T {i}).K(S{p},T {a}) :: cell⇒ K(S{p},T {i}).K(S{p},T {a}) :: cell,

K(S{u},T {i}).K(S{p},T {i}) :: cell⇒ K(S{p},T {i}).K(S{p},T {i}) :: cell

which is a subset of the previous one. It follows the rule (ii) is redundant.

4.2 Context-based reduction

There might be cases when simplifying some details of the given BCSL model preserves some properties while
making the analysis of the model simpler. This is particularly the case of dynamic analysis, where a minor
change in the model specification can dramatically affect the behaviour. To address the model simplification,
we first define a function that simplifies rules and then define the notion of a reduced model and show what
kind of information does it preserve.

Definition 4.11 (Rule reduction) Let R = (χ,ω, ι,ϕ,ψ) be a rule. We define a reduced rule R′ = (χ′ ,ω′ , ι′ ,ϕ′ ,ψ′)
as a function θ(R) such that ∀i ∈ [1, k] : χ′i = sup(X) where X is a compatible set such that χi ∈ X , length
k = |χ′ | = |χ| (i.e. the number of complex agents in both rules is the same), and ι = ι′ .

Definition 4.12 (Reduced model) Let M = (R,ΣA,ΣT,S) be an initial BCSL model. We define reduced model
M̃ = (R̃,ΣA,ΣT,I) such that the following conditions hold:

(i) for every rule R ∈ R, θ(R) ∈ R̃ and every rule in the reduced model is the image by θ of a rule of the initial
model;

(ii) for every complex agent X ∈ S , sup(X) ∈ I where X is a compatible set such that X ∈ X and every complex
agent in the reduced model is the image by sup(X) of a complex agent of the initial model.

Reduced model M̃ is created from the given BCSL model by reducing the context of complexes in the
rules to the maximum level. This is achieved by taking supremum from compatible set X . This procedure
can produce some not well-formed rules – such rules are omitted (Figure 3). Consequently, only rules creat-
ing/destroying agents and complex formation/dissociation should remain. Since we are reducing context, the
number of rules in the resulting model is equal to or smaller than the number of rules in the initial model.

Fig. 3. Examples of rule reductions. (left) A rule of complex formation is reduced to a version where none of the states is specified. (right)
A rule of state change inside of a complex is reduced to a rule which is not well-formed. It violates the condition (i) of Definition 2.26 –
an agent has to change during the rule application. Therefore it is removed from the reduced model.

Definition 4.13 (Compatibility of states) LetM be a BCSL model and s1,s2 two states from its LTS. The state
s1 is compatible with state s2, written s1Cs2, iff there exists a bijective function f : s1→ s2 such that ∀X ∈ s1 :
sup(X) = f (X) where X ⊆X is a compatible set w.r.t. X.

Definition 4.14 (Over-approximation of LTS) Let LT S(M),LT S(M′) be labelled transition systems of some
BCSL modelsM,M′ . The LT S(M′) is an over-approximation of LT S(M) if for every path . . .s′1s

′
2s
′
3 . . .s

′
n . . . in

LT S(M′) there exists a path . . .s1s2s3 . . .sm . . . in LT S(M) such that ∀s′i ,s
′
i+1 ∃sk ,sl : (l > k∧sk Cs′i ∧sl Cs

′
i+1).

A reduced model M̃ is actually an over-approximation of a BCSL model M in the context of their LTSs
(Definition 4.14). It can be used for some types of analyses which avoid combinatorial explosion of the initial
modelM.

Theorem 4.15 Let X be a complex agent, X be a compatible set w.r.t. X, M be a given BCSL model, and M̃ be
an appropriate reduced model of modelM. If supremum sup(X) is non-reachable in LT S(M̃), then agent X is also
non-reachable in the LT S(M).

13

Troják et al.

Proof. Let us assume a complex agent sup(X) is non-reachable in LT S(M̃), but X ∈ X is reachable in LT S(M).
Generally, there is a path formed from rules in the LT S(M) such that we transform complex agents from initial
agents to desired complex agent X. When we move to context of LT S(M̃), there is no such path for sup(X).

According to Definition 4.12, for every such rule there exists a reduced rule, such that all interacting complexes
are reduced to their suprema. Therefore, if we could apply an initial rule on a complex agent, we can do the same
with reduced rule and its supremum. It follows there must exist such path also in LT S(M̃) and the complex agent
sup(X) is reachable, which is a contradiction. �

When we are checking whether an agent is reachable in LT S(M) for given modelM, we might first check
whether the respective abstract agent (the supremum) is reachable in LT S(M̃) of the reduced model M̃. If
this holds then we are still not certain about reachability of the agent in its initial form. This has to be checked
in LT S(M). However, Theorem 4.15 states that agent which is not reachable in LT S(M̃) is also not reachable
in LT S(M). The usage of the theorem is demonstrated in Section 5.

4.3 Static non-reachability analysis

Since we have defined the compatibility operator for agents, we can apply static non-reachability analysis
before enumerating the entire transition system of the modelM. We can use the fact that there has to exist
a compatible agent on the right-hand side of a rule with the desired agent in order to construct it eventually.
This analysis is independent of the initial state of the model. However, it is worth noting that we do not
consider the trivial case when the desired agent is already in the initial state.

Theorem 4.16 LetM be a BCSL model and R its set of rules. Let X be a complex agent. The complex agent X is
non-reachable w.r.t. set of rules R if the following holds: ∀ R ∈ R ∀i ∈ RHS(R) : ¬(χi C X), where R = (χ,ω, ι,ϕ,ψ).

Proof. Let us assume we have a path of states constructed by applying corresponding rules from R where X is
reachable. At some point on the path, we inevitably have to create a complex agent X2 C X from a complex agent X1
applying a rule R.

It requires there has to be a complex agent X′2 in the rule which is compatible with the complex agent X2. If there
is no such agent, the agent X is non-reachable. �

Compared to dynamic non-reachability analysis, Theorem 4.16 completely avoids any combinatorial ex-
plosion and gives an answer only by checking structural properties of rules. The usage of the theorem is
demonstrated in Section 5.

5 Case study

We want to demonstrate practical purposes of static analysis defined in this paper. Yamada et al. model [28]
is a model of fibroblast growth factor (FGF) signalling pathway. The model represents a signalling pathway,
which is typically a cascade of signal transduction. It means that incorrect behaviour on a particular point
in the cascade will influence the rest of the pathway. The entire model written in BCSL syntax consists of 20
types of agents interacting in 57 rules. Most of proteins can undergo phosphorylation (state change from u to
p on some amino acid residues). We consider initial conditions such that there are all required agents in one or
two repetitions (in cases when there are required multiple agents to create complexes, e.g. FGF). In such case,
the number of reachable states can grow up to 272, which is too high to be effectively enumerated. In Figure 4,
there is a fragment of the model required for our purposes, the whole model is available in Appendix A.

For example, we want to check whether given agent FRS(Thr{u},Tyr{u}).FGF(Thr{u}).R.FGF(Thr{u}).R::cyt
is reachable for the given model. The agent is formed from FGF proteins which are unphosphorylated (u)
on threonine residues (Thr). With the traditional approach, we have to enumerate entire transition system of
the model and then use model checking method to check it. In our case, we can check if it is non-reachable
using static reachability analysis (Theorem 4.16). The conclusion is that there is no compatible agent on any
right-hand side of the rules. It follows that the given complex agent is non-reachable.

Demonstration of context-based reduction (Theorem 4.15) is provided on the same model as in the previous
case. We can compute with the entire model since we will reduce its context to the minimum. Applying the

14

Troják et al.

reduction, there are created 16 bidirectional rules (Figure 5). The size of transition system has significantly
decreased – it has approximately six hundreds of states and two thousands of edges.

(i) FGF +R⇔ FGF.R
(ii) 2 FGF.R⇔ FGF.R.FGF.R

(iii) FGF(Thr{u}).R.FGF.R⇔ FGF(Thr{p}).R.FGF.R
(iv) FRS(Thr{u}) + FGF(Thr{p}).R.FGF(Thr{p}).R⇒

⇒ FRS(Thr{u}).FGF(Thr{p}).R.FGF(Thr{p}).R
(v) FRS(Thr{u}).FGF.R.FGF.R⇒

⇒ FRS(Thr{p}).FGF.R.FGF.R
...

Initial conditions:

2 FGF(Thr{u})
2 R

1 FRS(Thr{u},T yr{u})
...

Fig. 4. A fragment of Yamada et al. model [28] of FGF signalling pathway written in BCSL. All agents are residing in a cytosol cyt
compartment, which are omitted for simplicity. The rule (iv) requires both threonine residues (Thr) on FGF proteins to be phosphorylated
(p). Basically, it is not possible to create a complex from FRS and unphosphorylated (u) FGF proteins. Full model is available in
Appendix A.

For instance, we want check reachability of a complex agent Raf (T hr{p}).ERK(T yr{p},T hr{p})::cyt in the
initial model. We can first check whether its corresponding least specified agent Raf .ERK::cyt is non-reachable
in the reduced model. Since the transition system of the model is relatively small, it can be quite easily
checked using dynamical model checking. The answer in this case is non-reachable, which means the origi-
nal agent in non-reachable too.

FGF + R ⇔ FGF.R

FGF.R + FGF.R ⇔ FGF.R.FGF.R

FGF.R.FGF.R + FRS ⇔ FGF.R.FGF.R.FRS

FRS + SHP ⇔ FRS.SHP

GS + GPP ⇔ GS.GPP

GS + ERK ⇔ GS.ERK

FRS + GS ⇔ FRS.GS

FRS.GS + Ras ⇔ FRS.GS.Ras

GAP + Ras ⇔ GAP.Ras

Ras + Raf ⇔ Ras.Raf

PP + Raf ⇔ PP.Raf

Raf + MEK ⇔ Raf .MEK

XPP + MEK ⇔ XPP.MEK

MEK + ERK ⇔ MEK.ERK

MKP + ERK ⇔ MKP.ERK

ERK + FRS ⇔ ERK.FRS

Fig. 5. Yamada et al. model [28] after context-based reduction was applied. All agents are residing in a cytosol cyt compartment, which
are omitted for simplicity. Original model is available in Appendix A.

6 Conclusions

We have presented the second generation of Biochemical Space Language, a novel high-level language for the
hierarchical description of biological structures and mechanistic description of chemical reactions by means
of compact rules. With respect to the previous prototype [8] the language fully utilises the specific view on
the biochemical structures and reactions and the level of abstraction is not lost by translating the language
into a low-level formalism not capable of maintaining a hierarchy of object types at the adequate level of
abstraction.

We have defined and consequently demonstrated on several case studies static analysis techniques that are
unique for the level of abstraction the language uses. We have shown it is possible to detect redundant rules
and answer some reachability queries statically. The potential of the language provides the basis for further
static analysis that is enabled by the specific abstraction and rule-based approach. Compared to low-level
languages, we can take advantage of the hierarchy and relationships built among agents, as demonstrated in
provided analysis techniques.

We are aware of necessity to deeply compare these defined relations with the concepts of other formalisms.
Our notion of compatible sets has a relation to orthogonal fragments in Kappa [11]. Despite the fact that
on our level of abstraction we do not have binding sites, the compatible sets can be seen as a simplified
version of orthogonal fragments operating only on the level of states. Similarly, the reduction of models (and
consequently reachability analysis) can be related to decontextualisation in Kappa [10]. The formulation of
exact relationships is left for the future work.

15

Troják et al.

We are planning to extend the language by quantitative aspects such that we enable simulations of the
models. However, this is quite a challenging task since writing a rate of the rule requires to express how
particular agents from the rule participate in the rate while keeping the syntax readable and concise. We
are also developing the tool BCSgen that is able to maintain and analyse BCSL specifications with its online
version eBCSgen.

References

[1] Andrews, S. S., Smoldyn: Particle-based Simulation with Rule-based Modeling, Improved Molecular Interaction and a Library Interface,
Bioinformatics 33 (2017), pp. 710 – 717.

[2] Calzone, L., F. Fages and S. Soliman, BIOCHAM: An Environment for Modelling Biological Systems and Formalizing Experimental
Knowledge, Bioinformatics 22 (2006), pp. 1805–1807.

[3] Camporesi, F., J. Feret and K. Q. Lỳ, KaDE: A Tool to Compile Kappa Rules into (Reduced) ODE Models, in: International Conference on
Computational Methods in Systems Biology, Springer, 2017, pp. 291–299.

[4] Cardelli, L., From Processes to ODEs by Chemistry, in: The 5th Ifip International Conference On Theoretical Computer Science (TCS 2008)
(2008), pp. 261–281.

[5] Ciocchetta, F. and J. Hillston, Bio-PEPA: A Framework for the Modelling and Analysis of Biological Systems, Theoretical Computer
Science 410 (2009), pp. 3065–3084.

[6] Danos, V., J. Feret, W. Fontana, R. Harmer and J. Krivine, Rule-Based Modelling and Model Perturbation, in: Transactions on
Computational Systems Biology XI (2009), pp. 116–137.

[7] Danos, V. and J. Krivine, Formal Molecular Biology Done in CCS-R, Electronic Notes in Theoretical Computer Science 180 (2007),
pp. 31–49.

[8] Děd, T., D. Šafránek, M. Troják, M. Klement, J. Šalagovič and L. Brim, Formal Biochemical Space with Semantics in Kappa and BNGL,
Electronic Notes in Theoretical Computer Science 326 (2016), pp. 27–49, the 6th International Workshop on Static Analysis and
Systems Biology, SASB 2015.

[9] Faeder, J. R., M. L. Blinov, W. S. Hlavacek et al., Rule-based Modeling of Biochemical Systems With BioNetGen, Methods Mol Biol 500
(2009), pp. 113–167.

[10] Feret, J., Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation, in: Proceedings of the International Conference
of Computational Methods in Sciences and Engineering, ICCMSE’2007, Corfu, Greece, number 963.(2) in American Institute of Physics
Conference Proceedings (2007), pp. 619–622.

[11] Feret, J. and K. Q. L, Reachability Analysis via Orthogonal Sets of Patterns, Electronic Notes in Theoretical Computer Science 335
(2018), pp. 27–48, 7th International Workshop on Static Analysis and Systems Biology (SASB 2016).

[12] Fisher, J. and T. A. Henzinger, Executable Cell Biology, Nature biotechnology 25 (2007), p. 1239.

[13] Honorato-Zimmer, R., A. J. Millar, G. D. Plotkin and A. Zardilis, Chromar, a Rule-based Language of Parameterised Objects, Theoretical
Computer Science (2017).

[14] Kitano, H., Computational Systems Biology, Nature 420 (2002), pp. 206 – 210.

[15] Klement, M., T. Děd, D. Šafránek, J. Červený, S. Müller and R. Steuer, Biochemical Space: A Framework for Systemic Annotation of
Biological Models, Electronic Notes in Theoretical Computer Science 306 (2014), pp. 31–44.

[16] Klement, M., D. Šafránek, T. Děd, A. Pejznoch, L. Nedbal, R. Steuer, J. Červený and S. Müller, A Comprehensive Web-based Platform
for Domain-specific Biological Models (2013), pp. 61–67.

[17] Lopez, C. F., J. L. Muhlich, J. A. Bachman and P. K. Sorger, Programming Biological Models in Python Using PySB, Molecular Systems
Biology 9 (2013).

[18] Misirli, G., M. Cavaliere, W. Waites, M. Pocock, C. Madsen, O. Gilfellon, R. Honorato-Zimmer, P. Zuliani, V. Danos and A. Wipat,
Annotation of Rule-based Models with Formal Semantics to Enable Creation, Analysis, Reuse and Visualization, Bioinformatics 32 (2015),
pp. 908–917.

[19] Paulevé, L., S. Youssef, M. R. Lakin and A. Phillips, A Generic Abstract Machine for Stochastic Process Calculi, in: Proceedings of the 8th

International Conference on Computational Methods in Systems Biology, ACM, 2010, pp. 43–54.

[20] Pedersen, M., A. Phillips and G. D. Plotkin, A High-level Language for Rule-based Modelling, Plos One 10 (2015), pp. 1–26.

[21] Pedersen, M. and G. Plotkin, A Language for Biochemical Systems: Design and Formal Specification, in: Transactions on Computational
Systems Biology XII: Special Issue on Modeling Methodologies, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010 pp. 77–145.

[22] Phillips, A. and L. Cardelli, Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus, in: International Conference
on Computational Methods in Systems Biology (2007), pp. 184–199.

16

Troják et al.

[23] Regev, A. and E. Shapiro, Cells as Computation, in: International Conference on Computational Methods in Systems Biology, Springer,
2003, pp. 1–3.

[24] Romers, J. C. and M. Krantz, rxncon 2.0: A Language for Executable Molecular Systems Biology, bioRxiv (2017).

[25] Sneddon, M. W., J. R. Faeder and T. Emonet, Efficient Modeling, Simulation and Coarse-graining of Biological Complexity with NFsim,
Nature Methods 8 (2011), pp. 177–183.

[26] Sorokina, O., A. Sorokin, J. D. Armstrong and V. Danos, A Simulator for Spatially Extended Kappa Models, Bioinformatics 29 (2013),
p. 3105.

[27] Troják, M., D. Šafránek, J. Hrabec, J. Šalagovič, F. Romanovská and J. Červený, E-cyanobacterium.org: A Web-based Platform for Systems
Biology of Cyanobacteria, in: Computational Methods in Systems Biology, LNBI 9859 (2016), pp. 316–322.

[28] Yamada, S., T. Taketomi and A. Yoshimura, Model Analysis of Difference Between EGF Pathway and FGF Pathway, Biochemical and
Biophysical Research Communications 314 (2004), pp. 1113–1120.

[29] Zhang, F. and M. Meier-Schellersheim, SBML Level 3 Package: Multistate, Multicomponent and Multicompartment Species, Version 1,
Release 1, Journal of Integrative Bioinformatics 15 (2018).

A Model Yamada et al. 2004

FGF :: cyt +R :: cyt ⇔ FGF.R :: cyt

2 FGF.R :: cyt ⇔ FGF.R.FGF.R :: cyt

FGF(T hr{u}).R.FGF.R :: cyt ⇔ FGF(T hr{p}).R.FGF.R :: cyt

FRS(T hr{u}).FGF.R.FGF.R :: cyt ⇒ FRS(T hr{p}).FGF.R.FGF.R :: cyt

FRS(T hr{p}).FGF.R.FGF.R :: cyt ⇒ FRS(T hr{p}) :: cyt + FGF.R.FGF.R :: cyt

SHP :: cyt + FRS(T hr{p}) :: cyt ⇒ SHP.FRS(T hr{p}) :: cyt

FRS(T hr{p}).SHP :: cyt ⇒ FRS(T hr{u}).SHP :: cyt

FRS(T hr{u}).SHP :: cyt ⇒ FRS(T hr{u}) :: cyt + SHP :: cyt

GPP :: cyt + GS(T hr{p}) :: cyt ⇒ GPP.GS(T hr{p}) :: cyt

GS(T hr{p}).GPP :: cyt ⇒ GS(T hr{u}).GPP :: cyt

GS(T hr{u}).GPP :: cyt ⇒ GS(T hr{u}) :: cyt + GPP :: cyt

ERK(T yr{p},T hr{p}) :: cyt + GS(T hr{u}) :: cyt ⇒ ERK(T yr{p},T hr{p}).GS(T hr{u}) :: cyt

GS(T hr{u}).ERK :: cyt ⇒ GS(T hr{p}).ERK :: cyt

GS(T hr{p}).ERK :: cyt ⇒ GS(T hr{p}) :: cyt + ERK :: cyt

FRS(T hr{p},T yr{u}) :: cyt + GS(T hr{u}) :: cyt ⇔ FRS(T hr{p},T yr{u}).GS(T hr{u}) :: cyt

Ras(T hr{u}).FRS.GS :: cyt ⇒ Ras(T hr{p}).FRS.GS :: cyt

Ras(T hr{p}).FRS.GS :: cyt ⇒ Ras(T hr{p}) :: cyt + FRS.GS :: cyt

GAP :: cyt + Ras(T hr{p}) :: cyt ⇒ GAP.Ras(T hr{p}) :: cyt

Ras(T hr{p}).GAP :: cyt ⇒ Ras(T hr{u}).GAP :: cyt

Ras(T hr{u}).GAP :: cyt ⇒ Ras(T hr{u}) :: cyt + GAP :: cyt

Ras(T hr{p}) :: cyt + Raf (T hr{u}) :: cyt ⇒ Ras(T hr{p}).Raf (T hr{u}) :: cyt

Raf (T hr{u}).Ras :: cyt ⇒ Raf (T hr{p}).Ras :: cyt

Raf (T hr{p}).Ras :: cyt ⇒ Raf (T hr{p}) :: cyt + Ras :: cyt

PP :: cyt + Raf (T hr{p}) :: cyt ⇒ PP.Raf (T hr{p}) :: cyt

Raf (T hr{p}).PP :: cyt ⇒ Raf (T hr{u}).PP :: cyt

Raf (T hr{u}).PP :: cyt ⇒ Raf (T hr{u}) :: cyt + PP :: cyt

Raf (T hr{p}) :: cyt + MEK(Ser212{u}) :: cyt ⇒ Raf (T hr{p}).MEK(Ser212{u}) :: cyt

MEK(Ser212{u}).Raf :: cyt ⇒ MEK(Ser212{p}).Raf :: cyt

MEK(Ser212{p}).Raf :: cyt ⇒ MEK(Ser212{p}) :: cyt + Raf :: cyt

17

Troják et al.

Raf (T hr{p}) :: cyt + MEK(Ser298{u}) :: cyt ⇒ Raf (T hr{p}).MEK(Ser298{u}) :: cyt

MEK(Ser298{u}).Raf :: cyt ⇒ MEK(Ser298{p}).Raf :: cyt

MEK(Ser298{p}).Raf :: cyt ⇒ MEK(Ser298{p}) :: cyt + Raf :: cyt

XPP :: cyt + MEK(Ser212{p}) :: cyt ⇒ XPP.MEK(Ser212{p}) :: cyt

MEK(Ser212{p}).XPP :: cyt ⇒ MEK(Ser212{u}).XPP :: cyt

MEK(Ser212{u}).XPP :: cyt ⇒ MEK(Ser212{u}) :: cyt + XPP :: cyt

XPP :: cyt + MEK(Ser298{p}) :: cyt ⇒ XPP.MEK(Ser298{p}) :: cyt

MEK(Ser298{p}).XPP :: cyt ⇒ MEK(Ser298{u}).XPP :: cyt

MEK(Ser298{u}).XPP :: cyt ⇒ MEK(Ser298{u}) :: cyt + XPP :: cyt

ERK(T hr{u}).MEK :: cyt ⇒ ERK(T hr{p}).MEK :: cyt

ERK(T hr{p}).MEK :: cyt ⇒ ERK(T hr{p}) :: cyt + MEK :: cyt

ERK(T yr{u}).MEK :: cyt ⇒ ERK(T yr{p}).MEK :: cyt

ERK(T yr{p}).MEK :: cyt ⇒ ERK(T yr{p}) :: cyt + MEK :: cyt

MKP :: cyt + ERK(T hr{p}) :: cyt ⇒ MKP.ERK(T hr{p}) :: cyt

ERK(T hr{p}).MKP :: cyt ⇒ ERK(T hr{u}).MKP :: cyt

ERK(T hr{u}).MKP :: cyt ⇒ ERK(T hr{u}) :: cyt + MKP :: cyt

MKP :: cyt + ERK(T yr{p}) :: cyt ⇒ MKP.ERK(T yr{p}) :: cyt

ERK(T yr{p}).MKP :: cyt ⇒ ERK(T yr{u}).MKP :: cyt

ERK(T yr{u}).MKP :: cyt ⇒ ERK(T yr{u}) :: cyt + MKP :: cyt

FRS(T yr{u}).ERK :: cyt ⇒ FRS(T hr{u},T yr{p}).ERK :: cyt

FRS(T hr{u},T yr{p}).ERK :: cyt ⇒ FRS(T hr{u},T yr{p}) :: cyt + ERK :: cyt

FRS(T yr{p}) :: cyt ⇒ FRS(T yr{u}) :: cyt

ERK(T hr{u}) :: cyt + MEK(Ser212{p},Ser298{p}) :: cyt ⇒
⇒ ERK(T hr{u}).MEK(Ser212{p},Ser298{p}) :: cyt

Ras(T hr{u}) :: cyt + FRS(T hr{p},T yr{u}).GS(T hr{u}) :: cyt ⇒
⇒ Ras(T hr{u}).FRS(T hr{p},T yr{u}).GS(T hr{u}) :: cyt

FRS(T hr{u}) :: cyt + FGF(T hr{p}).R.FGF(T hr{p}).R :: cyt ⇒
⇒ FRS(T hr{u}).FGF(T hr{p}).R.FGF(T hr{p}).R :: cyt

ERK(T yr{u}) :: cyt + MEK(Ser212{p},Ser298{p}) :: cyt ⇒
⇒ ERK(T yr{u}).MEK(Ser212{p},Ser298{p}) :: cyt

FRS(T yr{u}) :: cyt + ERK(T yr{p},T hr{p}) :: cyt ⇒
⇒ FRS(T yr{u}).ERK(T yr{p},T hr{p}) :: cyt

18

	Introduction
	Formal definition of Biochemical Space Language
	Formal preliminaries
	Objects definition
	Syntax
	Translation function
	BCSL model
	Matching
	Semantics

	Syntactic extensions
	Partial composition context elimination
	Complex signature
	Directions
	Stoichiometry
	Locations
	Variables

	Static analysis
	Rule redundancy elimination
	Context-based reduction
	Static non-reachability analysis

	Case study
	Conclusions
	References
	Model Yamada et al. 2004

