
SASB 2015

Formal Biochemical Space with Semantics in
Kappa and BNGL ??

T. Děd, D. Šafránek, M. Troják, M. Klement, J. Šalagovič, L. Brim

Faculty of Informatics, Masaryk University
Brno, Czech Republic

Abstract

Biochemical Space (BCS) has been introduced as a semi-formal notation for reaction networks of bio-
logical processes. It provides a concise mapping of mathematical models to their biological descrip-
tion established at a desired level of abstraction. In this paper, we first turn BCS into a completely
formal language with rigorously defined semantics by means of a simplified Kappa calculus. On the
practical end, we support BCS with translation to BNGL, a well-known practically used rule-based
language. Finally, we show the current status of BCS defined for cyanobacteria processes.

1 Introduction

To provide a rigorous representation of complex biological processes with-
out congesting the users with overcomplicated syntax, we have enriched
our online platform for modelling of cyanobacteria processes, e-cyanobac-
terium 2 , with a semi-formal textual notation called Biochemical Space (BCS)
[?]. BCS represents reaction networks of the studied processes and provides
a concise mapping of mathematical models to a precise biological descrip-
tion that is established at a consortium-agreed level of abstraction.

The concept of BCS makes a crucial methodological part of Compre-
hensive Modelling Platform (CMP), a general platform for computational
modelling and analysis of biological processes, first introduced in [?] as
a concept for unambiguous representation of internally consistent reduced

1 This work has been supported by the Czech Science Foundation grant No. GA15-
11089S.
2 http://www.e-cyanobacterium.org, http://www.cyanoteam.org

http://www.e-cyanobacterium.org
http://www.cyanoteam.org

T. Děd et al.

mathematical models of oxygenic photosynthesis [?] and further refined to
a general online modelling platform as described in [?]. In general, the main
goal of BCS as a part of CMP is to simplify systems level model-building
tasks by providing simple and clear way of notation easily understandable
by in silico modellers on the one end, and experimental biologists on the
other end.

Fig. 1. Graphical representation of Comprehensive Modelling Platform (CMP).

In [?] we have shown that rule-based methods can be directly used for
rewriting existing kinetic models of oxygenic photosynthesis into a com-
pact non-redundant form obtained by applying a set of automatised syn-
tactic reductions defined in Kappa [?]. That achievement lead us further to
employ rule-based definition of biological processes as the framework for
qualitative description of the consortium-agreed understanding of chem-
ical reactions behind the processes. Existing quantitative models can be
then mapped onto the qualitative rule-based BCS.

BCS borrows concepts from two worlds – the formal rule-based lan-
guages and semi-formal reaction network annotation bases such as KEGG [?].
The BCS language is defined with a clear relation to BNGL [?], a practi-
cal tool-supported rule-based language compatible with Kappa. Since the
most important requirement of the consortium-driven modelling platform
is a simple-to-use format well-adjusted to the suitable level of abstraction
employed for biological process description, we were not able to directly
employ any of the well-established rule-based languages and rather defined
a new language with a clear relation to the existing formats.

In particular, for our purpose BNGL and Kappa consider too many de-
tails. The most important fact is that BNGL requires to specify bindings
inside the complex structures. This demands binding sites specification
for each molecule and unique labelling for each interaction. In BCS, these
structural details are abstracted out. It is enough just to know that molecules
interact and form a complex while abstracting from the details. Another is-
sue is the fact that existing formalisms consider biological entities as agents
all defined at the same level of abstraction. In BCS we allow hierarchical

2

T. Děd et al.

construction of agents from simple molecules to composite structures and
complexes. Finally, the algebraic representation of Kappa and BNGL goes
quite far from common chemical notation and is not human readable. BCS
attempts to avoid this.

In [?] we have presented general ideas behind BCS. The language has
been defined as a semi-formal notation. In this paper, we turn BCS into a
completely formal language with clearly defined syntax and semantics (by
embedding to Kappa). We define the relation of BCS and BNGL which al-
lows us to translate specification between both languages. In Section ??, we
show the current status of BCS description implemented for cyanobacteria.

1.1 Related Work

On the bioinformatics side, the closest format to BCS is KEGG [?]. In con-
trast to BCS, KEGG does not support rule-based description allowing com-
pact representation of combinatorial states. Moreover, it does not support
logical organization of entities and reactions into an organism-specific hi-
erarchy that may significantly simplify understanding of the complex pro-
cesses driving the organisms physiology and its interaction with the envi-
ronment. Since the notation relies on a simple textual base and focuses on
a simple but still reasonably precise and compact description maintainable
by biologists, the format of BCS specification is compliant with KEGG.

BCS should be also compared to the well-acclaimed standard provided
by SBML [?,?] that might be also used for representation of a biochemical
space. BCS completely avoids issues related with dynamical models. As an
annotation platform purely focused on process-level description, BCS goes
beyond SBML level 2 in generalization of entities to hierarchical agents, in
introducing entity states, and in dealing with related combinatorial explo-
sion. These issues are solved in detail by rule-based approaches [?,?] and
there is a draft of a package for SBML level 3 in preparation [?] (multi).

In comparison with process algebraic languages treating chemical re-
actions mechanistically as communicating concurrent processes [?,?], BCS
keeps a purely qualitative level of description closed to chemical reactions
and remains as simple as possible to cover the consortium-agreed level of
abstraction. The language defined in [?] targets a similar level of abstrac-
tion as BCS. However, it is intended more as a programming language for
biological systems than an annotation format.

2 Background

We define simplified Kappa (kappas) using a process-like notation as is pre-
sented in [?], syntax and the notions of structural equivalence and matching

3

T. Děd et al.

are entirely taken from [?]:

expression E ::= ∅ | a,E site s ::= nλι
agent a ::=N (σ) site name n ::= x ∈ S
agent name N ::= A ∈ A internal state ι ::= ε | m ∈ V
interface σ ::= ∅ | s,σ binding state λ ::= ε | i ∈N

where A is a finite set of agent names, S is a finite set of site names, V is a
finite set of values representing modified states of the sites. We use notation
σ (a) for a signature associated to an agent a.

An agent is denoted by its name and its interface. Interface consists of a
sequence of sites. xλι denotes a site x with internal state ι and binding state
λ. If the binding state is ε then the site is free, otherwise it is bound. By
convention, when a binding or internal site is not specified, ε is considered.

Note that full Kappa is richer. It allows a binding state meaning a free or
bound site, denoted by a question mark. We also omit rates from the rules.

Definition 2.1 An expression is well-formed if a site name occurs only once
in an interface and if each binding state (, ε) present in the expression occurs
exactly twice. The set of all well-formed expressions is denoted as E.

We assume a standard structural equivalence on well-formed expres-
sions that treats as equivalent all expressions differing in order of sites in
interfaces, order of agents in expression, and naming of binding sites.

A rule is a pair of expressions El , Er (usually written as El → Er). The set
of all rules is denoted as R. The left hand side El of the rule describes the
solution taking part in the reaction and the right hand side Er describes the
effects of the rule. The rule can be either a binding rule or a modification
rule. A binding (unbinding) rule binds two free sites together (or unbinds
two bound sites). A modification rule modifies some internal state [?].

Matching is a relation denoted as |=⊆ E×E and defined inductively in the
left column below. Replacement is a function E × E → E defined in the right
column below:

nλι |= nλι nλι [nλrιr] = nλrιr

nλι |= nλ nλι [nλr] = nλrι

σ |= ∅ σ [∅] = σ

s |= sl σ |= σl
s,σ |= sl ,σl

s,σ [sr ,σr] = s[sr],σ [σr]

σ |= σl
N (σ) |=N (σl)

N (σ)[N (σr)] =N (σ [σr])

E |= ∅ E[∅] = E

a |= al E |= El
a,E |= al ,El

(a,E)[ar ,Er] = a[ar],E[Er]

A replacement can be applied only if the corresponding matching is
satisfied.

4

T. Děd et al.

In order to apply a rule El → Er to a solution [E] the expression E repre-
senting the solution must first be reordered to an equivalent expression E′

that matches El (according to the definition of matching stated above). E′ is
then replaced with E′[Er] (also defined above).

Rule application is a mapping t : E × R → E such that t([E], (El ,Er)) =
[E′[Er]] whenever ∃E′ ∈ [E] : E′ |= El . Rules yield a transition system between
solutions containing an edge [E]→El ,Er [E′[Er]] whenever ∃E′ ∈ [E].E′ |= El .

An agent signature (Σ, I) is a pair of mappings Σ :A→ 2S and I :A×S →
2V . Informally, Σ restricts for each agent name A ∈ A the set of site names
that can occur in an agent with name A and I restricts the set of internal
states a particular site can attain. Additionally, expressions are treated as
complete if their agents employ all sites and states of the signature. For
formal definitions see [?] or the original paper [?].

A rule-based modelM is a tuple (Σ, I ,R) such that R satisfies the signa-
ture (Σ, I). An initialised modelM0 is a pair (M,Ei) whereM = (Σ, I ,R) is
a rule-based model and Ei is an expression representing the initial solution
such that Ei is complete for the signature (Σ, I).

Definition 2.2 A state space of an initialised model M0 = (M,Ei) is a pair
(Solutions(M0) ⊆ E ,Reactions(M0) ⊆ E ×E) defined inductively as follows:

(i) [Ei] ∈ Solutions(M0)

(ii) [E] ∈ Solutions(M0) and ∃r ∈ Rules(M).t([E], r) = [E′]
if and only if [E′] ∈ Solutions(M0) and ([E], [E′]) ∈ Reactions(M0)

In BNGL, agents are called molecules and they are specified in a similar
manner as in kappas. An example of a molecule is A(x∼n!1) where the site
x has an internal state n (separated from the site by a tilde) and a bind-
ing state is 1 (separated by the exclamation mark). The BNGL alternatives
to agent signatures are called molecule types and they are defined using
the notation demonstrated in the following example: A(x∼n∼b, y∼n∼a).
Here, the allowed internal states of the individual sites are separated by
tildes (site x can have an internal state n or b). Rules are described by the
lhs -> rhs notation (or lhs <-> rhs in the case of reversible rules). The in-
dividual model components (molecule types, reaction rules, seed species,
observables) are in BNGL separated by the begin keyword and end keyword.

3 Biochemical Space

BCS provides well described biological background for mathematical mod-
els of processes taking place in specific organism. Complete BCS model
provides a connection between existing ontologies and partial mathemat-
ical models. A BCS model is represented in a form of a textual file. This

5

T. Děd et al.

file offers a human readable format of BCS which can be easily edited in a
dedicated editor and visualised on the website. First part of a BCS model
is represented by a set of entities (to be compliant with process-algebraic
frameworks we call entities agents), while the second part contains rules
(abstractly represented chemical reactions defined over the set of entities).
In our case study, a consortium of scientists is involved in modelling several
cyanobacterial processes and in establishing of the respective BCS model.

When building the BCS model, emphasis is put on well-defined and
complete annotations. Therefore, links to relevant ontologies must be spec-
ified for each entity and rule. Unique IDs provided by ontologies can help
to automatically detect duplicities. IDs are also used to create hypertext
links to related ontologies on the web, thus providing a one part of the
already mentioned connection between ontologies and models. At this mo-
ment, links to KEGG, ChEBI, CyanoBase [?] and other databases are sup-
ported. A single entity or a rule can have multiple links to several external
databases. An example is presence of a particular entity in ChEBI as well
as in KEGG. In the case of annotating enzymatic rules, an EC number (here
acting as a descriptor of the rule mechanism behind the catalytic reaction)
is associated to the enzyme via a respective KEGG ID. For an entity that
represents a protein, annotation can be enriched with a sequence of genes
that encode the protein. A single link (in our case to genome browser in
CyanoBase) is created for every gene separately. If more than one gene se-
quence is present, additional information about every particular sequence
is specified in terms of notes. In general, NOTES records carry internal in-
formation about an entity or a rule. Finally, a comma is used as a separator
between records within links and notes fields. In most cases, ontologies
contain general information about entities and about rule mechanisms. If
this is not available, verbal description of the role of an entity or a rule can
be specified directly within the particular record.

Example 3.1 Description, links, and notes information for an entity.

DESCRIPTION: Protein involved in hydrolysis of N-acetylated amino acids

LINKS: KEGG::ec3.5.1.14, CBS::slr1653, CBS::sll0100

NOTES: ChEBI link is missing

The fact that most fields in entity and rule definitions are tightly cou-
pled with information from linked ontologies is the reason why we have
started with describing annotation attributes. In the first place, one of these
attributes is ENTITY NAME, which is taken from ontologies or follows the
standard naming conventions. ENTITY ID of every entity is fixed by the
consortium. KEGG ID, ChEBI ID or internal ID is used if no reasonable ID
is available. IDs of rules are internal and assigned automatically.

6

T. Děd et al.

Example 3.2 Complete information given for an atomic entity.

ENTITY ID: HCO3

STATES: {-, +}
LOCATIONS: cyt, liq

COMPOSITION:

ENTITY NAME: hydrogencarbonate

CLASSIFICATION: small molecule

DESCRIPTION: Plays major role in carbon concentrating mechanism (CCM).

LINKS: CHEBI::17544

ORGANISM: Synechococcus elongatus PCC 7942

An entity in our interpretation is a bounded space (a so-called compart-
ment) or a structural part of a specific organism. BCS covers a hierarchy
of entities ranging from small molecules (atomic entities (agents)) through
composite structures (structure entities (agents)) to large complex molecules
(complex entities (agents)). Our goal is to make BCS as simple as possible.
In existing ontologies, entities residing in several different states (oxidised,
reduced, etc.) are usually treated as separate entities, thus causing the total
number of entities to be enormous. To reduce this complexity, the con-
cept of STATES is defined in BCS. All states are enclosed in curly brackets
and they are comma-separated. The relationship entity–state is of the form
parent–child. All information about an entity is inherited by its states un-
less it is specified explicitly for a particular state. The ID of an entity and
its state in curly brackets form together a unique entity identifier. If no state
is specified, the default value is the ‘neutral’ (ground) state.

BCS extends the traditional concept of compartmentalisation with a hi-
erarchy at the level of entities. A particular entity can reside in several
different compartments as specified in the LOCATIONS field. Addition-
ally, the CLASSIFICATION field specifies the type of an entity in a sense of
functional or structural characterisation.

An entity can be a part of a structurally more complex entity. We con-
sider two kinds of composite entities: structure and complex entities. Struc-
ture entity represents partially specified composite species (we employ the
partial composition operator ‘|’, e.g., ps2(chl|yz|oec)), a photosystem com-
plex partially specified with prosthetic groups of interest ps2(chl|yz|oec)).
Complex entity represents fully specified composite species (we employ the
full composition operator ‘.’, e.g., a homodimer KaiC.KaiC). The composi-
tion of a composite entity is given in the field COMPOSITION. We employ
a so-called localisation operator ‘::’ to express the fact that an entity plays
a role of a location for the structurally simpler entity (e.g., chlorophyl chl
located in a photosystem ps2 is written chl :: ps2). In Example ?? there
is a protein KaiC specified as a partial composition of two amino acids

7

T. Děd et al.

of interest – serine (S) and threonin (T). In such a configuration, serine-
phosphorylated state of KaiC can be written as S{p} :: KaiC.

Example 3.3 Complete information given for a structure entity.

ENTITY ID: KaiC

STATES:

LOCATIONS: cyt

COMPOSITION: S | T
ENTITY NAME: circadian clock protein kinase KaiC

CLASSIFICATION: enzyme

DESCRIPTION: Monomer component representing a core component

of the circadian clock system.

LINKS: uniprot::Q79PF4, cyanobase::Synpcc7942 1216

ORGANISM: Synechococcus elongatus PCC 7942

Rules are specified by rule equations enriched with additional annota-
tion information. When defining a rule equation, identifiers of substrates
and products are used to make the notation of rules compact. Every en-
tity appearing in a RULE EQUATION has to be followed by the localisation
operator associating it with a particular compartment. This is important
especially for rules that act on both sides of a membrane. That way, a rule
is always precisely localised in/inbetween compartments. A natural stoi-
chiometric coefficient can be placed before any entity in a rule equation. Ir-
reversible and reversible rules are distinguished by the operators ‘⇒’, ‘⇔’.
The ‘+’ symbol is used as a separator between individual substrates and
individual products. A rule can also have an assigned classification. Rule
classification assigns a list of higher level biophysical processes in which
the rule is involved.

Example 3.4 Complete information for a rule.

RULE ID: NADPH oxid.

RULE EQUATION: NADPH :: cyt + 5h{+} :: cyt + pq :: cym⇒
⇒NADP {+} :: cyt + 4h{+} :: pps+ pqh2 :: cym

MODIFIER: NDH1

RULE NAME: plastoquinone reduction in the cytoplasmic membrane

CLASSIFICATION: reduction, oxidation

DESCRIPTION: Oxidation of NADPH and reduction of plastoquinone

in the cytoplasmic membrane.

In some cases, emphasis on a detailed description leads to very complex
BCS models. Abstraction of some processes is therefore needed to keep BCS
models as simple as possible. To this end, rules expressing enzymatic reac-
tions are considered in a simplified form. In fact, there should be at least

8

T. Děd et al.

two different rules describing an enzymatic reaction (one for a substrate
binding and another for a catalytic step). Instead, since an enzyme is not
affected during the reaction, it is affiliated to the rule as a MODIFIER. How-
ever, it is difficult to define precise meaning of a modifier in this case. We
rather treat the modifier field informally as an entity which has to be present
for the rule to be enabled. The exact reaction mechanism of an enzyme is
not always clear and therefore it is abstracted out (see Example ??).

Example 3.5 A rule employing structure entity state change.

RULE ID: FGFR2 phosph.

RULE EQUATION: T hr{u} :: FGF :: FGFR2 :: cyt⇔ T hr{p} :: FGF :: FGFR2 :: cyt

MODIFIER: NDH1

RULE NAME: FRRG2 threonine residue (de)phosphorylation

CLASSIFICATION: phosphorylation, dephosphorylation

DESCRIPTION: FGF enzyme is phosphorylated on threonine residue

in FGFR2 complex.

Higher abstraction comes into account when several electrons play ‘mu-
sical chairs’ inside protein complexes. The issue is that parts of processing
protein complex can have different unstable states during a short period
of time. When one tries to define all rules among these proteins, combi-
natorial explosion of the number of states of the complex arises. Not all
of these combinations are biologically correct. Even when excluding bi-
ologically inadmissible cases, the number of states is still enormous. For
the purpose of BCS, we introduce a solution inspired by the enzymatic rule
mentioned above. We treat a protein complex as a structure entity on which
structurally simpler entities change its state (not necessarily proteins) and
we abstract from background processes. We can see a particular rule as a
change of a state of a structure entity (see Example ??).

4 Formal Definition of Biochemical Space

At the general level, BCS is a complex annotation format for description
of the reaction network including textual annotation and links to existing
annotation bases. The rigorous (rule-based) core of the language is made by
declaration of chemical entities and reaction rules. The annotation part has
been described in [?]. Here we define the formal core of BCS and associate
it with a formal semantics by means of translating BCS rules into kappas.

Model in BCS is defined in similar way as a kappas model. First, we
define syntax of expressions describing agents formally in BCS. Next, the
notion of agent signature is defined that allows to specify restrictions on the
general expressions. Finally, agents are used as elementary constructs in
definition of BCS rules.

9

T. Děd et al.

4.1 BCS Agents

Let Na, NT , Nx, Nc, Ns be mutually exclusive finite sets of atomic, struc-
ture, complex, compartment, and state names, respectively.

Agents are defined hierarchically starting from atomic agents that are of
two kinds: class atoms representing (abstract) class agents and object atoms
representing (concrete) object agents. Class atomic agents allow us to rep-
resent compactly objects that can reside in several selected (or even all pos-
sible) states whereas object atomic agents represent concrete objects spec-
ified with the particular state. Every atomic agent must be accompanied
with a physical compartment within which it is considered.

Atomic agent expressions have the following syntax:

atomic agent a ::= a� | a� state signature δ ::= δ, s | s
class atom a� ::= αδ :: c state s ::= n ∈ Ns
object atom a� ::= α{s} :: c compartment c ::= n ∈ Nc
atom name α ::= n ∈ Na

From now on, we restrict ourselves to atomic agents where the state sig-
nature can be treated as a set (a state cannot occur more than once in a state
signature). This restriction is motivated by the aim to keep the language as
simple as possible. Treating the state signatures as multisets would lead to
confusions and is actually not needed to clearly represent biological objects.

Definition 4.1 Let a,a′ be atomic agents. We define the structural equiva-
lence of atomic agents by claiming a ≡ a′ whenever a,a′ are (i) two identical
object atoms or (ii) two identical class atoms that differ only in the order of
states in the state signature.

Notation 4.2

• We denote s ∈ δ the fact that s is included in the state signature δ.
• For better readability of class atomic agents, we enclose non-trivial state sig-

natures into curly brackets. I.e., we write α{δ} instead of αδ whenever δ con-
tains more than one state.

Since our notion of atomic agents considers concrete objects as well as
general classes of objects, we need to formally relate a class with concrete
objects that instantiate it. To this end, we define compatibility relation C
that is stronger than structural equivalence.

Definition 4.3 Let a,a′ be atomic agents. We say a is compatible with a′,
written a C a′, iff a ≡ a′ or iff there exist α,α′, s,δ,c such that a = α{s} :: c,
a′ = α′δ :: c, s ∈ δ, and α = α′.

An example of a class and object atomic agents is given in Table ??. In
particular, the class atom S{u,p} represents a serine amino acid that can be
considered in two different states. An object atom S{u} represents the un-

10

T. Děd et al.

phosphorylated form of serine.
Next we proceed with defining structure agents. A structure agent rep-

resents a biochemical object that is composed from several known atomic
agents provided that we know that such a composition is abstract and not
necessarily complete. To incorporate such an abstraction of biological struc-
tures into our language, a structure agent is defined to be labelled with a
unique name and it is constructed only from atomic agents considered in
the same physical compartment.

The key construct of a structure agent is partial composition defined as a
list of atomic agents which are considered to be relevant parts of the struc-
ture agent. We allow this list to be empty, in that case the meaning is a
biological structure for which we do not know its composition.

A typical example of a structure agent is a protein where the atomic
agents are individual amino acids that are of interest in the particular set-
ting. In Table ?? there is an example of a cyanobacteria clock protein KaiC
specified with an interest put to the serine amino acid (here denoted by the
class atomic agent S).

structure agent T ::= τ(γp) :: c

structure name τ ::= n ∈ NT
partial composition γp ::= ∅ | a | γp

We restrict the language to structure agents where the partial compo-
sition does not contain replicated agents (stoichiometry is not considered
at this level). More precisely, in every partial composition there is always
at most one occurrence of an atomic agent with a name n ∈ Na. The main
motivation for such a simplification is again the practical purpose of our
language. The concept of partial composition is primarily considered as a
rigorous identification of relevant parts of the non-trivial biochemical en-
tity (most typically a protein). These parts are possibly subject to state
changes.

Note that a compartment of a structure agent is uniquely given by the
compartment specified in its parts. We restrict ourselves to structure agents
where all atomic agents in the partial composition have the same compart-
ment. Assuming this restriction, we can shorten the notation by omitting
compartments in the atomic agents of a partial composition.

Notation 4.4

• We denote τ(...|a|...) :: c a structure agent of the name τ such that an atomic
agent a makes its part.

• We denote a ∈ γp the fact that γp includes the atomic agent a.
• The agent of the form τ(∅) :: c is usually written as τ :: c.
• A structure agent τ(γp) :: c is usually written τ(α1 |α2 |...|αn) :: cwhere α1, ...,αn

11

T. Děd et al.

are names of all agents in γp such that γp = a1 |...|an where each agent ai is ei-

ther of the form ai = αδii :: c or ai = αi{si} :: c for some δi a state signature, si
a state, and c a compartment shared among all agents in γp.

Definition 4.5 Let T,T′ be structure agents. We define the structural equiva-
lence of structure agents by claiming T ≡ T′ iff there exist τ,τ ′,γp,γ ′p,c such
that T = τ(γp) :: c,T′ = τ ′(γ ′p) :: c, τ = τ ′ and γp,γ ′p are equal or differ only in
the order of its components (the operator ‘|’ is considered associative and com-
mutative).

As a representative of a class of structurally equivalent structure agents
we consider the agent τ(γp) where the agents in γp are lexicographically
ordered by names. Since atomic agents cannot be repeated in a structure
agent, such an order is total.

Definition 4.6 Let T,T′ be structure agents. We say T is compatible with T′,
written TCT′, iff either T ≡ T′ or for each atomic agent a such that T = τ(...|a|...) ::
c there exists an atomic agent a′ such that T′ = τ ′(...|a′ |...) :: c, τ = τ ′ and aC a′.

In the following we define the last step in the hierarchy of agents. In par-
ticular, we define complex agents. A complex agent represents a non-trivial
composite biochemical object that is (inductively) constructed from already
known biological objects. In common rule-based languages this is typically
defined by introducing some kind of bonds between individual biochemi-
cal objects. In BCS we abstract from detailed specification of bonds and we
rather assume a complex as a coexistence of certain objects in a particular
group. Such a group can be optionally referred to by a unique name. A
complex agent is constructed from structure agents where all are required
to reside in the same compartment c.

A complex agent is given either directly as an expression inductively
built by applying coexistence operator ‘.’ to structure agents or indirectly
as a name referring to a separate set of definitions of complex agents (in-
corporated in the notion of agent signature). We use that approach because
we do not want to overcomplicate complex agent expressions.

The key element of a complex agent is full composition describing induc-
tively constructed coexistence expressions from existing agents. We restrict
ourselves to full compositions where all agents reside in the same compart-
ment.

complex agent X ::= γf :: c | n ∈Nx :: c

full composition γf ::= T.T | T.γf

In contrast to partial compositions, we allow replication at the level of
full compositions (an agent of a certain name can appear more than once in
a full composition). Moreover, names of complex agents are not associated
with particular full compositions at the level of agent expressions. This is

12

T. Děd et al.

a� S{u,p} :: cyt

atomic class agent Serine (S) in two possible states phosphorylated (p) and unphosphorylated (u)

existing in compartment cytosol (cyt).

a� S{u} :: cyt

atomic object agent Serine (S) in state unphosphorylated (u) existing in compartment cytosol (cyt).

T KaiC(S{u,p}) :: cyt

structure agent Protein KaiC containing Serine (S) in its partial composition γp . It is

possible to obtain two different derivations KaiC(S{u}) :: cyt and KaiC(S{p}) :: cyt.

X KaiC(S{u,p}).KaiC(S{u,p}).KaiC(S{u,p}).KaiC(S{u,p}).KaiC(S{u,p}).KaiC(S{u,p}) :: cyt

complex agent Complex of six KaiC structure agents (order does no matter).

Table 1
Examples of different forms of an agent.

done at the level of agent signatures (see Section ??).
Note that in similar way as in the case of structure agents, we restrict

the formalism to complex agents where the compartment is the same for
all agents inside the respective full composition.

Notation 4.7

• Let X = γf :: c for some full composition γf . We denote T ∈ X the fact that T
is a structure agent included in γf . Moreover, we denote #T[X] the number of
occurrences of T in γf .

• For a complex agent X = γf :: c where each item x ∈ X is an agent assigned to
a compartment c, we can use simplified notation that omits the compartment
suffix ‘:: c’ in individual agents of γf .

Next we define structural equivalence of complex agents. We employ
set-based approach to aggregate complex agents into equivalence classes.
In particular, at that level we achieve commutativity and associativity of
the operator ‘.’.

Definition 4.8 Let X,X′ be complex agents. We define structural equivalence
of complex agents by claiming X ≡ X′ iff either of the following conditions holds:

(i) There exist a compartment c and n,n′ ∈ Nx such that X = n :: c,X′ = n′ :: c
and n = n′.

(ii) If both X,X′ are specified as full compositions then the following two condi-
tions must be satisfied:
• for each T ∈ X there exists T′ ∈ X′ such that T ≡ T′ and #T[X] = #T′[X′],
• for each T′ ∈ X′ there exists T ∈ X such that T′ ≡ T and #T′[X′] = #T[X].

An example of a complex agent is given in Table ?? where the given com-
plex agent expression represents a large set of hexamers composed from
KaiC molecules each considered in arbitrary state.

Remark 4.9 From now on, we always consider a lexicographically ordered
agent as a representative of a class of structurally equivalent agents. Since

13

T. Děd et al.

agents are defined hierarchically, lexicographical order is applied recur-
sively to all nested agents. This allows us to always have a clearly defined
unique representative.

4.2 BCS Agent Signatures

The language of agents defined in the previous section gives us a formal
way how to encode biochemical objects at several levels of hierarchy and
abstraction. The notion of structure agents allows to generate arbitrary par-
tial compositions. Practically, we need to restrict the construction of com-
posite biochemical objects by giving a set of constraints reflecting our un-
derstanding of biological objects and the desired level of abstraction. This
can be achieved by assigning every structure agent name with a maximal
partial composition that gives the restriction on structure agents that can
be considered.

Similarly, the set of complex agents also needs to be restricted by spec-
ifying the catalogue of complex biochemical objects that can appear in the
considered biochemical space. This can be achieved by assigning every
complex agent name with a full composition that provides its definition.
This allows us to name biological compounds, e.g., H2O, and specify their
clear definition under the coexistence abstraction, e.g., H.H.O.

Definition 4.10 We say a pair (Στ ,Σx) is agent signature where Στ and Σx
are relations representing constraints on the construction of structure agents
and complex agents, respectively, defined in the following way:

• Every τ ∈ NT is assigned some partial composition γp, (τ,γp) ∈ Στ .
• Every n ∈ Nx is assigned some full composition γf , (n,γf) ∈ Σx.
Definition 4.11 We say a structure agent T = τ(γp) satisfies an agent signa-
ture (Στ ,Σx), written T |= (Στ ,Σx), iff for every atomic agent a ∈ γp there exists
a′ ∈ γ ′p such that aC a′ and (τ,γ ′p) ∈ Στ .

Remark 4.12 Note that for every τ ∈ NT the pair (τ,γp) ∈ Στ specifies the
most general structure agent of the name τ with respect to the relation C.
The meaning of the agent τ(∅) :: c (simply written τ :: c) is a short form for
the most general structure agent of the name τ specified in the signature.
This is just the agent given by the partial composition γp. Any agent τ(γ ′p)
where γ ′p is constructed from γp by omitting some atomic agents makes a
short form for τ(γp).

Note that with respect to Remark ?? we can write structure agents very
compactly. E.g., assume (τ,α1{s}|α

{s1,s2}
2) ∈ Στ then τ(∅) is interpreted as τ(α1{s}|α

{s1,s2}
2),

τ(α2{s1}) as τ(α1{s}|α2{s1}), etc.
Next we define expansion of named complex agent with respect to the

14

T. Děd et al.

given signature. In particular, we treat each pair (n,γf) ∈ Σx as a specifica-
tion of a full composition that is named n. Expansion then means replacing
every complex agent name with the respective full composition. Finally,
agents expanded with respect to a given signature are treated as agents sat-
isfying the signature.

Definition 4.13 Let (Στ , Σx) be a signature. Every complex agent X = n ∈ Nx
is expanded with respect to an agent signature (Στ , Σx), written X[(Στ , Σx)]
and defined X[(Στ , Σx)] = γf where (n,γf) ∈ Σx.
Definition 4.14 We say a complex agent X = γf satisfies an agent signa-
ture (Στ , Σx), written X |= (Στ , Σx), iff every structure agent T ∈ γf satisfies
T |= (Στ , Σx). A complex agent X = n ∈ Nx satisfies a signature (Στ , Σx) iff
X[(Στ , Σx)] |= (Στ , Σx).

4.3 BCS Rules

At this point, we proceed to define the set of BCS rules. In contrast to
kappas, a BCS rule has more complicated structure. This is due to the fact
that BCS goes closer to traditional formalism of chemical reactions, in par-
ticular, BCS rules consider stoichiometry and compartmentalisation of re-
acting species. Moreover, to a certain extent we introduce variables in rule
expressions allowing us to compact specification of repeating objects.

The list of rules R is defined by the following syntax:

rules R ::= ∅ | r,R
rule equation r ::= Γ � Γ

direction � ::= ⇒ | ⇔
rule expression Γ ::= ∅ | % ε :: c | % ε :: c + Γ

stoichiometry % ::= n ∈N+

rule expression item ε ::= ε1 | ε2 | ε3

basic rule agent ε1 ::= a | T | X
shallow rule agent ε2 ::= a :: T | T :: X

deep rule agent ε3 ::= a :: T :: X

We assume that a single rule cannot appear more than once in the list R
(every rule must be unique). In relation to that, we can use the notation
r ∈ R to refer to rules in R. See Section ?? for examples of several rules.

Rule expressions allow more extensive syntax in terms of the localisation
operator ‘::’. The localisation operator is intended for allowing an alterna-
tive way of expressing the hierarchically constructed agents. The main idea
is to allow zooming into individual parts of a complex or a structure agent.
E.g., for a structure agent τ(α1{s}|α

{s,t}
2) :: c residing in compartment c we can

use the notation α2{t} :: τ(α1{s}|α
{s,t}
2) :: c to refer explicitly to a concretisation of

its subagent α2. This notation is fully equivalent with the original form
τ(α1{s}|α2{t}) and can be therefore considered as an alternative way to concre-

15

T. Děd et al.

tise a structure agent.
Similarly, the concept of localisation is applied also to complex agents.

E.g., for a complex agent A(α1{s}).B(α{s,t}2) :: c we can zoom to some of its compo-
nents and express its concretisation such as B(α2{t}) :: A(α1{s}).B(α{s,t}2) :: c. In this
case, the notation B(α2{t}) :: A(α1{s}).B(α{s,t}2) is equivalent to the complex agent
A(α1{s}).B(α2{t}).

In every rule subexpression % ε :: c the compartment c makes the scope
for every agent appearing in ε. In particular, every agent inside ε is as-
sumed to be assigned the compartment c.

To simplify the resulting language to construct reasonable expressions
only, we restrict ourselves to rules where the operator ‘::’ respects con-
straints given in Definition ??.

Definition 4.15 Let ε be a rule expression item that appears in a rule r ∈ R.
The rule expression ε is well-defined iff the following constrains are satisfied:

(i) If a :: τ(γp) is a subexpression of ε for some a, τ,γp then there must
exist a′ ∈ γp such that aC a′.

(ii) If T :: X is a subexpression of ε for some T,X then there must exist T′ ∈ X
such that TC T′.

Every rule agent in a shallow or deep form can be translated to an equiv-
alent basic form. Formally, this is given in Lemma ??.

Lemma 4.16 (Rule Flattening) Let (Στ ,Σx) be a signature and R a set of rules.
Every rule r ∈ R that includes some rule agents in shallow or deep form can be
reduced to a rule r ′ ∈ R where every rule agent is in basic form. For every rule
agent ε in r, the reduction is done by replacing ε with ε′ in the following way:

(i) If ε = a :: T where T = τ(γp) for some τ,γp then there must exist a′ ∈ γp
such that aCa′. Then we set ε′ = τ(γ ′p) where γ ′p is constructed from γp by
replacing a′ ∈ γp with a.

(ii) If ε = T :: X where X = γf then there must exist T′ ∈ γf such that T C T′.
Then we set ε′ = γ ′f where γ ′f is constructed from γf by replacing T′ ∈ γf
with T.

(iii) If ε = a :: T :: X then the steps (i,ii) above are applied successively.

Definition 4.17 We say that a rule r ∈ R satisfies agent signature (Στ , Σx),
written r |= (Στ , Σx), iff every structure or complex agent that appears as a
rule agent in r satisfies agent signature (Στ , Σx).

To increase succinctness, we extend the language with a variable ?ν. A
variable can be assigned to any rule in place of an agent. Evaluation of a
variable within a rule is realised for every occurrence of ?ν. For a given
signature (Στ ,Σx) we assume that after evaluating the variable, every rule

16

T. Děd et al.

agent must satisfy the signature and is well-defined. Moreover, the scope
of the compartment is always uniquely given in the rule expression. The
domain of a variable is assumed to be considered as a set (values are not
repeated). An example is given in Example ??. The extended syntax is the
following:

extended rule equation r′ ::= r | Γ � Γ ; var

variable var ::= ∅ | ?ν = {φ} | ?ν1 = {φ1} | ?ν2 = {φ2} | ?ν3 = {φ3}
variable value φ ::= φ1 | φ2 | φ3

atomic variable value φ1 ::= a, φ1 | a
structure variable value φ2 ::= T, φ2 | T
complex variable value φ3 ::= X, φ3 | X
extended basic rule agent ε′1 ::= ε1 | ?ν
extended shallow rule agent ε′2 ::= ε2 | ?ν1 :: T | a ::?ν2 | ?ν2 :: X | T ::?ν3

extended deep rule agent ε′3 ::= ε3 | ?ν1 :: T :: X | a ::?ν2 :: X | a :: T ::?ν3

Finally, we define the notion of a BCS model that is given by a signature
and a set of rules.

Definition 4.18 A BCS model M is a tuple ((Στ ,Σx),R) such that every r ∈ R
it holds that r |= (Στ , Σx).

5 Translation to kappaskappaskappas

To define semantics for BCS language, we give an algorithm that translates
a given BCS model M to a kappas model M. We assume the model M is
normalised using the following procedures:

(i) all rules are flattened by employing Lemma ??,

(ii) every bidirectional rule is replaced by the two respective unidirec-
tional rules,

(iii) every rule with variables is replaced by the set of rules generated by
expanding all acceptable values for every variable.

Algorithm ?? takes a BCS model M and returns a kappas model M. It
uses three subroutines that modify respective types of BCS agents. Algo-
rithm ?? translates an atomic agent directly by extending an agent name
with a compartment name and adding a site p. Algorithm ?? translates a
structure agent where each atomic agent in its partial composition is en-
coded as a unique site. Finally, algorithm ?? translates a complex agent
where each structure agent in the respective full composition is treated as
a kappas agent. Since BCS does not provide binding sites, we fix linear
binding (see Section ?? for further discussion).

17

T. Děd et al.

Algorithm 1. Transform a BCS model M to a kappas modelM.
1: function toKappa(M = ((Στ ,Σx),R))
2: Σκ, I , R, A := ∅ # global kappas signature, rules and agent names
3: for all r ∈ R do
4: for all Γ ∈ {Γl ,Γr } such that r = Γl ⇒ Γr do # for both rule sides
5: E := ∅
6: for all % ε :: c ∈ Γ do # repeat %-times
7: if ε has the form a{s} then
8: E← translateAtom(ε :: c)
9: if ε has the form τ(γp) then

10: E← translateStructure(ε :: c)
11: if ε has the form X then
12: E := translateComplex(ε :: c, E)
13: construct a kappas rule rκ from the two resulting sets E obtained for Γl ,Γr
14: R← rκ # extend kappas rules

returnM = (Σκ, I , R)

Algorithm 2. Transforms an atomic agent to a kappas agent.
1: function translateAtom(a{s} :: c)
2: A← a c # extend kappas agent names
3: Σκ← (a c, {p}) # introduce a new site name p into signature
4: σ (a c)← ps # add the site to the agent interface

return a c(σ) # return kappas agent

Algorithm 3. Function transforms structure agent to kappas agent.
1: function translateStructure(τ{γp} :: c)
2: A← τ c # extend kappas agent names
3: for all a{s} :: c ∈ γp do
4: Σκ← (τ c, {a}) # introduce a new site name into the signature
5: σ (τ c)← as # add the site to the agent interface

return τ c(σ) # return kappas agent

Algorithm 4. Transforms a complex agent to a kappas agent.
1: function translateComplex(X :: c, E)
2: i := 0
3: for all T ∈ X do
4: agent a := translateStructure(T)
5: Σκ← (a, {l, r}) # add sites for binding
6: if i , 0 then
7: I ← ((a, l), {i})
8: σ (a)← li # set bond with left binding partner
9: i := i + 1

10: if i , #T[X] then
11: I ← ((a, r), {i})
12: σ (a)← ri # set bond with right binding partner
13: E← a(σ) # extend expression E

return E

6 Comparison of BCS and BNGL

It is necessary to note that BCS currently does not provide quantitative se-
mantics. It just describes the system structure and the relationships be-
tween entities.

Another issue is if there is a rule containing a modifier, there are two
options how to express it in BNGL. The first option is to add the modifier
to both sides of the rule, the second is to include it (quantitatively) in the

18

T. Děd et al.

reaction rate function. BCS has to employ the first option. There is also an
alternative solution in BCS – the field MODIFIER in the BCS rule annota-
tion record.

BCS does not provide binding sites. This is caused by the fact it also
does not provide specification of a bond. In BNGL, binding makes a binary
operation between two components and the bond must be always specified
by using operators ‘.’ and ‘!’ where each bond has a unique ID inside a com-
plex. This detailed notion is not present in BCS since we want to abstract
such details.

However, this kind of abstraction introduces the inability to distinguish
two complexes composed from the same subparts (e.g. proteins). For ex-
ample, consider a protein P with a single binding site. A complex formed
from n proteins P can be created from n-1 bonds (linear conformation) to
NP I(n) = n(n−1)

2 , which is the maximal number of possible interactions in-
side the complex (assuming only one bond between two proteins is possi-
ble). It follows that a complex CBCS formed from n proteins P in BCS is
the set of all possible structural conformations Ci of the complex in BNGL
where all proteins are considered:

CBCS =
m⋃
i=0

Ci , where m is the number of connected graphs on n nodes.

Stringency of a rule makes a relevant difference. Stringency stands for
degree of universality or specificity of the rule, i.e. the width of the ap-
plicability. In both languages, this can be solved by context of the rule.
However, it is not always suitable to list the whole context. An example
can be phosphorylation in circadian clock (Example ??). It can occur on
each KaiC protein which is included in a complex. For this purpose there is
‘site!+’ notation in BNGL which requires the protein to be in a bound state.
Since BCS does not provide binding sites, this cannot be used.

To this end, we employ the localisation operator ‘::’ in rule agents. It
allows to nest rule agents to strengthen the stringency. Moreover, we have
introduced variables in BCS. A variable in a reactant is denoted ?ν and can
be specified as a set of atomic, structure or complex agents to which the
rule can be applied.

The last fact that is worth noting is construction of complex structures.
In BNGL, each complex is identified with an exact structural notation which
does not allow hierarchical construction. BCS provides the notion of struc-
ture and complex agents, this allows to form a hierarchy of the agents. Ad-
ditionally, when defining a rule with quantities of interacting entities, in
BNGL it is necessary to enumerate all of them whereas in BCS the stoi-
chiometry is allowed in standard way.

19

T. Děd et al.

6.1 BCS and BNGL translation

It is possible to translate from BCS to BNGL. This can be achieved by the
application of finite set of transformation steps. The procedure is analogous
to translation to kappas (Section ??).

Translation BNGL to BCS is also possible, but the bond information is
discarded in the process. In particular, all binding operations have to be
removed. The only problem is the ‘!+’ notation in BNGL which requires a
bond for a entity. This kind of bond has a high level of abstraction. For
this reason we cannot translate such a rule. However, every rule in BNGL
with ‘!+’ can be expanded to finite number of rules where this operator is
omitted. Instead of an unknown bond, there are enumerated rules each
accompanied with a known binding partner. In that case, the variable ?ν is
added to the BCS rule containing all the enumerated binding partners.

7 Case Study

BCS makes a part of CMP and is implemented at e-cyanobacterium.org and
currently covers several functional modules of cyanobacteria. To support
translation between BCS and BNGL, we have implemented a set of scripts 1

allowing to translate a BCS model to BNGL and vice versa.

7.1 Metabolism

Metabolism forms the backbone of cyanobacteria cellular processes and
in BCS covers the largest part of cyanobacteria network. We distinguish
two groups of entities in metabolism – enzymes and metabolites. Enzymes
drive metabolic reactions and therefore are assigned to rules as modifiers.
On the other hand, metabolites are small molecules playing a role of sub-
strates or products of metabolic rules with no enzymatic function. Both
groups are involved in rules which occur mostly in the cell cytoplasm,
therefore the majority of their entities uses cytoplasm as a compartment.

Example 7.1 A rule from metabolism of cyanobacteria. It is visualised in Fig-
ure ?? in the upper left part.

1 http://www.e-cyanobacterium.org/downloads/

20

http://www.e-cyanobacterium.org/downloads/

T. Děd et al.

Fig. 2. Part of the reaction scheme of metabolism in cyanobacteria [?].

RULE ID: (S)-malate:NAD{+} oxidoreductase

RULE EQUATION: malate :: cyt +NAD{+} :: cyt⇔ oxaloacetate :: cyt +

+ NADH :: cyt +H{+} :: cyt
MODIFIER:

RULE NAME: malate oxidation

CLASSIFICATION: oxidation, reduction

DESCRIPTION: Process is involved in citric acid cycle. Malate is

oxidised to oxaloacetate producing NADH from NAD{+}.

In metabolism, there are approximately 770 rules. Despite the fact that
there are plenty of molecules, the rules are very specific. In our proposed
rule-based language it means the mapping of reactions to rules is almost
one-to-one (reaction-like rules). The stringency of rules is high which is
what allows them to be applied only to a narrow group of molecules. It
causes that compaction of metabolism in rules brings almost no benefits.

7.2 Circadian clock

Circadian clock is one of the most complex processes in cyanobacteria BCS.
Its core is formed by three proteins KaiA, KaiB and KaiC. Moreover, KaiC
contains two phosphorylation sites serine S431 and threonine T 432. These
sites can be phosphorylated independently, but only if KaiC is in a com-
plex. All these proteins can interact with each other in predetermined
ways and form specific complexes. All processes inside the cell are then
controlled by periodical formation/dissociation and (de)phosphorylation
of these complexes.

21

T. Děd et al.

Fig. 3. Circadian clock cycle constructed by 17 BCS rules including complex formation, translation
and phosphorylation.

Example 7.2 Serine (de)phosphorylation on KaiC protein. In Figure ?? it is
(also with threonine phosphorylation) responsible for all short cycles.

RULE ID: serine (de)phosph.

RULE EQUATION: S{u} :: KaiC :: ?X :: cyt⇔ S{p} :: KaiC :: ?X :: cyt ;

?X = {KaiC6,KaiA2C6,KaiB6C6,KaiA4C6,KaiA6B6C6}
MODIFIER:

RULE NAME: Serine phosphorylation and dephosphorylation

CLASSIFICATION: phosphorylation, dephosphorylation

DESCRIPTION: KaiC molecule is phosphorylated/dephosphorylated on serine

amino acid. This process can appear whenever KaiC is in one of

the complexes enumerated in variable X.

Owing to the fact the proteins can form homohexamers or smaller com-
plexes, and each of these complexes can interact with others, it causes
combinatorial explosion. Together there is possible formation of six dif-
ferent complexes containing KaiC: KaiC6, KaiB6C6, KaiA2C6, KaiA4C6,
KaiA4B6C6 and KaiA6B6C6. Each protein KaiC can occur in four dif-
ferent states because of the two phosphorylation sites. Considering all six
complexes and also other rules in circadian clock, we obtain combinatorial
explosion of different species in the system. To achieve representation of
the whole system it is inefficient to enumerate each single conformation.
To this end, we employ the capability of BCS rules.

Example 7.3 Formation of KaiB6C6 complex is important for circadian clock.
It can be seen in the upper left part of Figure ??, where it forms the bigger cycle
(with all other complex formation rules).

22

T. Děd et al.

RULE ID: KaiB6C6 form./diss.

RULE EQUATION: 6 KaiB :: cyt +KaiC6 :: cyt⇔ KaiB6C6 :: cyt

MODIFIER:

RULE NAME: KaiB6C6 complex formation and dissociation

CLASSIFICATION: complex formation, dissociation

DESCRIPTION: Formation of complex from six KaiB molecules and KaiC hexamer

and its dissociation. KaiC6 represents specification of complex

composed from six KaiC proteins, KaiB6C6 complex of six KaiC

and six KaiB respectively.

LINKS: doi::10.1093/emboj/18.5.1137, doi::10.1016/j.febslet.2009.11.021

In BCS we have achieved complete, human readable representation of
circadian clock using only 17 rules (examples are rules in Example ?? and
Example ??). Regarding the defined agents, it gives us over 500 different
distinguishable entities, while in BNGL similar number of rules describing
the same system gives us almost 25000 entities.

7.3 Photosynthesis

Photosynthesis represents part of BCS of cyanobacteria. The process occurs
in a specific folds of the cell membrane called thylakoid membrane. Pho-
tosynthesis serves as the source of energy taken from light and transferred
into production of ATP and NADPH molecules with oxygen resulting as a
by-product.

Fig. 4. Reaction scheme of photosynthesis in cyanobacteria. The lumen processes are displayed
under thylakoid membrane while stroma processes are above.

23

T. Děd et al.

Example 7.4 A rule from photosynthesis. Oxidation reaction on PSII.

RULE ID: PSII oxidation

RULE EQUATION: ps2(oec{3+} | yz{+}) :: tlm⇔ ps2(oec{4+} | yz{n}) :: tlm

MODIFIER:

RULE NAME: oxidation from S3 to S4 of oxygen evolving complex

CLASSIFICATION: oxidation

DESCRIPTION: Oxidation occurring on photosystem II. Electron is

transferred from oxygen evolving complex oec to active

tyrosine yz.

Entities of photosynthesis BCS are represented by several complex pro-
teins (enzymes) residing on the thylakoid membrane (tlm) in the cell. Since
the thylakoid membrane encloses the inner-membrane space called lumen
(lum) where H2O molecules are processed, there are basically three loca-
tions defined for this set of entities. Rules occurring in the lumen, cytosol
and in-between the thylakoid membrane and these locations have classi-
cal form. However, electron transfer reactions occurring in the structure of
complex processes lead to combinatorial explosion of all possible confor-
mations.

Photosynthesis is constructed from approximately 30 agent definitions
which are interacting in over 60 rules. From the rule-based point of view,
this representation is somewhere between circadian clock (Section ??) and
metabolism (Section ??). It means the number of generated distinguishable
entities arises compared to defined agents, but not as dramatically as in
circadian clock. However, photosynthesis is a good example of rule-based
process.

8 Conclusions

We have lifted the annotation format BCS to a formal language compatible
with well-established rule-based languages. We have given an automated
support for translating between BCS and BNGL. Currently, BCS is used
on the portal e-cyanobacterium.org for description of cyanobacteria pro-
cesses. In case study section we have shown the language is suitable for
rule-based systems as well as reaction-based systems. For future work we
plan to define an operational semantics directly without an intermediate
format. This will enable implicit description of the model states space and
allow to gain from the compact representation and take the advantages of
on-the-fly model checking.

24

