
Parameter Synthesis and Robustness Analysis
of Rule-Based Models?
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Abstract. We introduce the Quantitative Biochemical Space Language,
a rule-based language for a compact modelling of probabilistic behaviour
of complex parameter-dependent biological systems. Application of rules
is governed by an associated parametrised rate function, expressing par-
tially known information about the behaviour of the modelled system.
The parameter values influence the behaviour of the model. We propose
a formal verification-based method for the synthesis of parameter values
(parameter synthesis) which ensure the behaviour of the modelled sys-
tem satisfies a given PCTL property. In addition, we demonstrate how
this method can be used for robustness analysis.

1 Introduction

In systems biology, models of biological processes have to reflect several levels of
abstraction adapted accordingly to the known information. At every level, the
system has to be described rigorously in a formal language to avoid misunder-
stood and ambiguous interpretations.

Rule-based languages represent an intuitive and convenient modelling tool for
biologists because the dynamics of biochemical systems is typically determined
by the underlying causal rules. Existing rule-based languages focus on specific
features such as structures binding [15,19], regulatory interactions [41], modular-
ity [39], or spatial aspects [24]. However, a challenge is to combine suitable levels
of abstraction (ranging from qualitative to quantitative aspects) with the com-
pactness of the description while not compromising human readability. To that
end, we have introduced Biochemical Space Language (BCSL) [42], a high-level
rule-based language that combines several features of rule-based frameworks in
a single formalism.

BCSL design stems from a long-time practical experience with describing
biochemical processes rigorously but still in a way that is understandable by the
users (biologists in this case). The central goal is to describe the biochemistry
of a given process at the mechanistic level, in our words, to build the so-called
biochemical space of the given process. Biochemical space plays a central role in
the platform we are developing for modelling, specification, and analysis of bio-
logical processes [43]. In this context, the rule-based description in BCSL serves
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as a bridge between the explicit biological knowledge and mathematical models
that typically encrypt the information in non-trivial chains of approximations.
It is worth noting that rule-based description of (bio)chemical processes is the
essence of chemistry and hence the rule-based view is natural to systems mod-
ellers [38]. BCSL has been successfully used in the international consortium for
cyanobacteria modelling and analysis [43].

Apparently, by building the biochemical space in a rule-based language, we
obtain an executable alternative to the existing mathematical models [20]. In
particular, the long-term goal is to use the biochemical space as an integrated
model of the given biological problem. To fulfil this goal, the language has to
support quantitative aspects of the rules, e.g., the rate of performing the rule.
Such quantitative aspects have been addressed in Kappa [15], BNGL [19], and
BIOCHAM [11], a more general framework has been introduced in Chromar [24],
and in the process-algebraic approach of BioPEPA [13]. However, quantitative
aspects have not yet been addressed in BCSL. Due to the specific level of ab-
straction considered in BCSL, it is not possible to directly adapt the solutions
employed in above-mentioned languages.

In this paper, we introduce the quantitative BCSL (qBCSL) by extending
BCSL with quantitative dynamical aspects. This is realised by associating rules
with parametrised rate functions of the current state of the system dynamics.
The intended meaning is to quantify the rate of the particular interaction. A
model with rate-assigned rules gives rise to probabilistic semantics which is ex-
pressed by means of parametric Markov Chains (pMC) [16,33] representing the
family of Discrete Time Markov Chains (DTMC) for all admissible settings of
parameters (parametrisations) appearing in rate functions. Based on the tool
Storm [18] we establish a framework for (exact) parameter synthesis of qBCSL
models with respect to PCTL [23] properties. Technically, the method computes
a rational function that assigns the probability of satisfying a given property to
each parametrisation. Note that the stochastic semantics of a rule-based model is
traditionally formalised as a Continuous Time Markov Chain (CTMC) [21]. How-
ever, the scalalbility of existing exact methods [2,10] is limited to small models,
other available methods are just simulation-based, thus providing only approx-
imative results. Following the idea of using approximate models with discrete-
time semantics [3], we consider the DTMC that provides efficient methods to
analyse exact probability of PCTL properties.

In addition, we provide an approach for global robustness analysis of qBCSL
models with respect to a given parameter perturbation and a PCTL formula.
Global robustness characterises the mean validity of a formula over all parameter
values in the given perturbation set [5,12]. The entire framework is implemented
in the open source tool eBCSgen1 and demonstrated on a biological case study.

The primary contribution of this paper is in bringing the exact parame-
ter synthesis into the field of rule-based models with stochastic semantics. The
uniqueness of our solution is not only in the level of abstraction qBCSL pro-
vides but also in the fact that we directly interpret rule-based models by means

1 https://github.com/sybila/eBCSgen
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of DTMCs to support formal analysis. Such a setting allows to apply efficient
parameter synthesis techniques [16,17,22] to rule-based models.

1.1 Related Work

In qBCSL, objects are projected into multisets that represent the model states.
The stochastic multiset rewriting (SMR) was used in [3] to encode expressive pro-
cess calculi such as π-calculus. In [4], SMR was used as a base for parametrised
mass-action reaction-based models encoded by means of interval Markov Chains
(iMC) where parameters range over closed intervals. Given the fixed structure
of mass-action kinetics and intervals of kinetic parameters values, they compute
lower and upper bounds for reachability probability. In our case, we support ra-
tional parametrised kinetic functions and employ parameter synthesis techniques
giving a symbolic function representing the exact parameter sets.

Methods for parameter synthesis of pMCs have been introduced with sym-
bolic computation of reachability properties through state elimination [16,22,27],
recently improved by parameter lifting [40] and fraction-free Gaussian elimina-
tion [26]. Here we employ these techniques as implemented in Storm tool.

An alternative approach to the analysis of complex stochastic models under
parameter uncertainty is based on statistical methods [1,8,9,35]. There are only
a few works that bridge the rule-based framework to such techniques. In [34], a
statistical parameter sampling method is employed to analyse unknown parame-
ters in BNGL models represented by means of CTMCs where the rate function is
limited to mass action kinetics. The work [28] employes statistical model check-
ing for parameter synthesis of CTMCs. The recent work [30] combines statistical
model checking with machine learning techniques to calibration (estimation) of
parameters in order to maximise the probability of satisfying a given specifica-
tion. In [6], the authors adapt simulation-based and moment-based methods. In
general, statistical techniques do not give an exact symbolic representation of
satisfying parameter sets.

2 Preliminaries

Throughout this section, we consider a given set of atomic propositions AP.
Discrete Time Markov Chain (DTMC) is a tuple (S, s0, ρ, L) where S is the set
of states, s0 ∈ S is the initial state, ρ : S ×S → [0, 1] is the transition probability
matrix, where for all s ∈ S we require that

∑
s′∈S ρ(s, s′) = 1, and L : S → 2AP

is a labelling function which gives the atomic propositions that are true in a
state.

The matrix entry ρ(s, s′) gives the probability of making a transition from s
to s′. The probability of following a finite path s0s1 . . . sn is ρ(s0, s1)·ρ(s1, s2)·. . .·
ρ(sn−1, sn). These probabilities for finite paths give rise to a unique probability
measure Prs on the set Paths of infinite paths starting in state s defined on the
sets of paths having a finite common prefix, such that

Pr({ω | ω = ss1 . . . sn.ω
′}) = ρ(s, s1) · ρ(s1, s2) · . . . · ρ(sn−1, sn).
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The logic PCTL [23] is a probabilistic variant of CTL where the existential
and the universal quantification over paths in CTL is replaced with a proba-
bilistic operator Π./%(·), where ./ ∈ {≤, <,>,≥} and % ∈ [0, 1] is the probability
threshold, that can be applied to a path formula. The formal syntax of PCTL
formulae is given by the following grammar:

φ ::= True | a ∈ AP | φ ∧ φ | ¬φ | Π./ n(ψ)
ψ ::= Xφ | φUφ

The semantics of PCTL is the same as that of CTL [14] for the fragment
where they both coincide. The semantics of the probabilistic operator is:

s |= Π./ n(ψ) iff Prs({ω ∈ Paths | ω |= ψ}) ./ n

meaning that the probability measure of the set of paths satisfying ψ is calculated
and compared to the threshold n, yielding true or false.

The standard qualitative model checking algorithm proceeds in the same
way as for CTL, by induction on φ. In [16], a symbolic approach was proposed.
It is based on derivation of a finite state automaton (FSA) A = (S, Σ, δ,Sf )
from given DTMC. S is the same set of states as in the DTMC, the alphabet
Σ consists of the strictly positive entries of the probability matrix, the set of
final states Sf and the transition function δ depend on the path formula under
consideration.

The regular language L(A, s) recognized by A with an initial state s ∈ S,
corresponds to the (possibly infinite) set Ω of finite paths from s to some final
state in Sf , following only transitions allowed by δ.

A regular expression r over an alphabet Σ is computed using the state-
elimination algorithm [25]. The evaluation val(r) of the regular expression can
be done by replacing union by addition, concatenation by multiplication, and
star by the limit of a geometric series (for the formal definition, see [16]).

The evaluation of a regular expression r computed for a language L(A, s) is
the probability measure in s of the set of paths with prefixes in Ω:

val(r) = Prs({ω ∈ Paths | ∃k ≥ 0.ω(k) ∈ Sf ∧ ∀l < k,∃a ∈ Σ.ω(l + 1) ∈ δ(ω(l), a)})

The model checking problem can be then solved for a state s by evaluating
a regular expression r equivalent to the language recognized by the automaton
with the initial state s, i.e. s |= Π./ n(ψ) iff val(r) ./ n.

We can also directly specify properties which evaluate to a numerical value
– the result of quantitative model checking. This is achieved by replacing the
probability bound from Π operator with ‘=?’. Note that this is only allowed
when the Π in question is the outermost operator of the property. The evaluation
is then given as Π=?(ψ) = Prs({ω ∈ Paths | ω |= ψ}) which means it can be
computed using the symbolic approach as Π=?(ψ) = val(r).
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3 Quantitative Biochemical Space Language

In this section, we define quantitative Biochemical Space Language (qBCSL)
with quantitative aspects, as an extension of BCSL [42]. The quantitative aspects
enable to reason about the rate of interactions to occur. All the definitions are
demonstrated in a simple example in Section 3.1.

Let NT, NA, Nc, and Nδ be mutually exclusive finite sets of agent, atom,
compartment, and feature names, respectively. The syntax of the qBCSL objects
is given by the following grammar:

multiset M ::= ∅ | T | M,M atomic name η ::= x ∈ NA

agent T ::= µλc (γ) agent name µ ::= x ∈ NT

composition γ ::= ∅ | A, γ feature δ ::= x ∈ Nδ
atom A ::= η{δ} compartment c ::= x ∈ Nc

complex ID λ ::= x ∈ N

We restrict ourselves only to finite expressions and require that an atomic
name occurs at most once in a composition.

We denote by M the set of all multisets. We assume the structural congru-
ence ≡ to be the least congruence on multisets satisfying axioms M1,M2 ≡
M2,M1 and M, ∅ ≡ M, where M1,M2 represents the union of multisets M1 and
M2. Additionally, we assume a similar relation ≡γ on compositions defined as
the least congruence satisfying axioms A, γ ≡γ γ,A and ∅, γ ≡γ γ.

The structural congruence ≡ (resp. ≡γ) allows us to formally define the
algebraic multiset operations ∈,⊆,⊂,∪,∩ and \ on qBCSL terms. For example,
T ∈ M corresponds to ∃M′ ∈ M.M ≡ T,M′ and M ⊆ M′ corresponds to ∃M′′ ∈
M.M′ ≡ M,M′′. Moreover, by M(T) we denote the number of occurrences of
agent T in the multiset M and by M(M′) the number of occurrences of multiset
M′ in the multiset M, which is at least one in the case M ⊆ M′ (formally, it is
defined as minimal M(T) for all T ∈ M′).

We denote by Λ the set of all complex IDs of a multiset M. Two multisets
are equal, M1 = M2, if there exists a bijective function h : Λ1 → Λ2 such that
Mh

1 ≡ M2 where Mh
1 denotes M1 with every occurrence of a complex ID λ replaced

by h(λ).

Agent signature σT : NT → 2NA is a function from an agent name to a set
of atomic names. Set of possible agent signatures is denoted as ΣT. Atomic
signature σA : NA → 2Nδ is a function from an atomic name to a non-empty set
of feature names. Set of possible agent signatures is denoted as ΣA.

Let Vc and Vλ be mutually exclusive finite sets of the compartment and
complex variables, respectively. Additionally, let Vδ = Nδ ∪ {ε} be a set of
feature names extended by a special symbol ε. Pattern P is defined according to
the same grammar as multisets with the following modifications:

feature δ ::= s ∈ Vδ
compartment c ::= v ∈ Vc ∪ Nc

complex ID λ ::= l ∈ Vλ
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We denote by P the set of all patterns and with P⊥ we denote the set of
all patterns restricted to δ ∈ Nδ and c ∈ Nc. Note that the congruence relation
defined on multisets does not hold in case of patterns. A pattern is well-formed
if the atoms are alphanumerically sorted with respect to their names.

An instantiation is a function I : Vδ ∪ Vc ∪ Vλ → Nδ ∪ Nc ∪ N such that
I(s) ∈ Nδ, I(v) ∈ Nc, and I(l) ∈ N for s ∈ Vδ, v ∈ Vc, and l ∈ Vλ, respectively.
We denote by Γ the set of all instantiations.

Given an atomic signature σA and a pattern P ∈ P, with I(P) we denote the
multiset obtained by replacing each occurrence of a term ν appearing in P with
the corresponding instantiation I(ν) respecting the signature σA. Particularly,
the signature σA restricts instantiation of each feature ε to one of the feature
names defined for the appropriate atomic name. Please note that the same term
repeating on separate positions in the pattern can be instantiated to different
values.

Given two finite patterns P = T1,T2, . . . ,Tn and P′ = T′1,T
′
2, . . . ,T

′
m, in-

stantiations I, I ′ ∈ Γ are consistent with respect to the given patterns P,P′,
written I(P)∆ I ′(P′), if ∀i ∈ [1,min(m,n)] the following conditions hold:

1. λ(Ti) = λ(T′i)⇒ λ(I(Ti)) = λ(I ′(T′i))
2. c(Ti) = c(T′i)⇒ c(I(Ti)) = c(I ′(T′i))
3. Ak(Ti) = Ak(T′i)⇒ Ak(I(Ti)) = Ak(I ′(T′i))

where λ(T) denotes the complex ID λ of the agent T, c(T) denotes compartment
c of the agent T, and Ak(T) denotes the atom from the composition γ of agent
T on a position k.

Pattern expansion is a function 〈 〉 : P × ΣT → P which extends a given
pattern P to a pattern 〈P〉 such that every occurrence of a composition γ of an
agent T is extended by atoms whose names are not yet present in γ and are
defined in the given signature σT ∈ ΣT. These newly added atoms have assigned
feature ε and are inserted to the composition in such way that they preserve the
alphanumerical order.

Let V be a set of parameters. For each parameter v, a domain of admissible
positive values is assigned, denoted by D(v) ∈ 2R

+

. In the following, we define
the grammar for the algebraic rational rate expression f:

rate expression f ::= g
g
| g

polynomial expression g ::= c | v | [ t ] | g + g | g × g | gn

where c ∈ R is a constant, v ∈ V is a parameter, n ∈ N is an exponent, and
t ∈ P is a pattern such that all agents have the same complex ID λ.

We denote by F the set of all rate expressions and with Fv rate expressions
without the patterns (note that Fv ⊆ F). For the sake of readability, we allow
additional simplifications (e.g. parentheses) which can always be converted to a
form given by the provided grammar.

Multiset evaluation F × M → Fv of a rate expression f on a multiset M,
written f(M), is a rate expression f ′ ∈ Fv such that each pattern [ t ] is replaced
by an integer

∑
I∈Γ M(I〈t〉) expressing the sum of all possible instantiations of
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the pattern. Note that number of possible instantiations Γ is finite with respect
to the set of all complex IDs Λ of multiset M.

Rewrite rule R is a triple (Pl,Pr, f) ∈ P ×P ×F, usually written as Pl
f−→ Pr.

It describes a structural change of a multiset defined by the difference between
left-hand and right-hand side patterns, associated with the rate expression f.

A qBCSL model M is a tuple (R, σT, σA,M0,V) such that R is a finite set
of rewrite rules, σT ∈ ΣT is an agent signature, σA ∈ ΣA is an atomic signature,
M0 ∈M is an initial multiset, and V ∈ V is a set of parameters.

3.1 Example

We provide an example consisting of a fragment of photosynthesis processes of
cyanobacteria. Note that this fragment is not accurate and its purpose is to
demonstrate all the formal aspects of the language only.

Let ps1tlm(p700{n}, a{n}, achl{∗}) denote an agent – photosystem of cyanobac-
teria – in thylakoid membrane compartment (tlm) with three active domains
represented as atoms: photosystem reaction center p700, primary acceptor of
photosystem a (both in neutral state n), and chlorophyll antenna achl in excited
state ∗.

Next, let us have an agent signature σT = {ps → {p700, a, achl}}, which
defines allowed set of atoms for the photosystem. Note that each atomic name
defined in the agent signature for an agent has to be used in its composition.
An atomic signature σA = {p700→ {n,+}, a→ {n,−}, achl→ {n, ∗,+}} defines
allowed states for reaction center p700, acceptor a, and antenna achl.

We can use a pattern P = psxtlm(p700{n}, a{ε}) to describe the photosystem
such that its affiliation to a particular complex is not given, only identified by
a variable x. The state of p700 is specified as neutral while for the acceptor a
it is unknown (denoted with ε). Additionally, note that not every atom from
the signature has to be specified (achl is omitted), which is the key aspect for
compactness of the rule-based approach.

Such pattern can be instantiated by function I = {x → 1, ε → −} which
assigns to each unspecified element of a pattern a particular value. Applying the
instantiation on the pattern P, we obtain I(P) = ps1tlm(p700{n}, a{−}).

However, the achl atom is missing in the composition. For this purpose,
the pattern expansion is defined, which, when applied on a pattern, creates the
expanded pattern 〈P〉 = psxtlm(p700{n}, a{ε1}, achl{ε2}). Given the instantiation
function I = {x→ 1, ε1 → −, ε2 → +}, the instantiation of expanded pattern is
I〈P〉 = ps1tlm(p700{n}, a{−}, achl{+}).

psxtlm(p700{n}, achl{+}) k1×[psxtlm(p700{n},achl{+})]−−−−−−−−−−−−−−−−−→ psxtlm(p700{+}, achl{n}) (1)

The rule 1 represents a reduction of oxidized primary electron donor in pho-
tosystem. It describes a change of states of p700 and achl regardless of the state
of acceptor a. Complex variable x ensures that the complex ID of the agent does
not change. The rate expression is dependent on the number of occurrences of the
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pattern in a given multiset and a parameter k1 ∈ [5, 10] representing admissible
values for mass action law constant.

psxtlm(∅), psytlm(∅)
k2×[psxtlm(∅)]×([ps

y
tlm(∅)]−1)−−−−−−−−−−−−−−−−−→ psxtlm(∅), psxtlm(∅) (2)

The rule 2 describes a formation of a complex from two ps agents. The
formation is independent of the particular conformation of compositions of the
agents (represented by ∅). Similar to the previous rule, the rate is dependent on
the number of occurrences and a parameter k2 ∈ [0, 2] representing admissible
values for mass action law constant.

3.2 Semantics

The semantics for the qBCSL is given in two steps – (1) we construct a para-
metric Quantitative Labelled Transition System (pQLTS) by transitive rewriting
of multisets with rules such that nodes represent multisets, transitions applied
rules, and quantitative labels evaluated rate expressions; and (2) we create para-
metric DTMC (pMC) from pQLTS such that labels of outgoing edges for each
state are normalised to probability functions of parameters.

Let M = (R, σT, σA,M0,V) be a qBCSL model. The rewriting of the mul-

tisets is given by labelled transition relation M1
f′−→ M2 with f ′ ∈ Fv and

M1,M2 ∈M satisfying the following inference rule:

R : Pl
f−→ Pr Ms = Mt

∃ I, I ′ ∈ Γ. I〈Pl〉 = Ml ∧ I ′〈Pr〉 = Mr

I〈Pl〉∆ I ′〈Pr〉
Unique(Ms; Ml) ∧ Unique(Mt; Mr)

Ms,Ml
f(Ms,Ml)−−−−−→ Mt,Mr

It is possible to consider multiset rewriting which is context-free in terms of
complex manipulations. It enables so-called side effects – modifications beyond
the scope of the rule (e.g. synthesis of a new agent with an already existing com-
plex ID). In order to avoid these side effects, we define predicate Unique(M1; M2)
which holds if ∀(T1,T2) ∈ M1 ×M2.λ(T1) 6= λ(T2) for some M1,M2 ∈ M. This
predicate is used in conditions of inference rule of labelled transition relation,
which ensures that if the rule is modifying a complex, it is modifying it as a
whole and if the rule is creating a new complex, it has a unique identifier across
the newly created multiset. An indirect consequence of disabled side effects is
that the number of encoded particular agents of a model is finite.

We define parametric Quantitative Labelled Transition System pQLTS as a
triple (S,L, 7→) where each transition corresponds to the application of a rewrite
rule. For a model, it is obtained by transitive closure of inference rule starting
from M0. The label ` ∈ L of a transition is an evaluated rate expression of the
applied rule. We denote by `(s, s′) the label of transition t(s, s′) ∈ 7→.

Parametric Markov chain pMC is a tuple (S, s0, ρ′,V, L) where S is a finite
set of states, s0 ∈ S is the initial state, ρ′ : S × S → Fv is the parametric
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transition probability matrix, V is a finite set of parameters, and L : S → 2AP is
a labelling function which gives the atomic propositions that are true in a state.

We consider a given set of atomic propositions AP which are expressions
over the set of patterns P⊥ of type [a] ./ n where a ∈ P⊥, ./ ∈ {≤, <,>,≥}, and
n ∈ N. Moreover, Boolean combinations of such expressions are also allowed.

We define the probabilistic semantics of a qBCSL model using a translation
from its pQLTS into a pMC. We have to calculate, for each states s and s′ of
pQLTS, the probability of moving from s to s′, by exploiting rate functions. We
define a function ϑ : S → Fv where

ϑ(s) =
∑
s′∈S `(s, s

′)

such that by default if t(s, s′) 6∈ 7→ then `(s, s′) = 0.
We derive a pMC (S, s0, ρ′,V) from a pQLTS (S,L, 7→) by computing para-

metric transition probability matrix ρ′ : S × S → Fv such that ∀s, s′ ∈ S.s 6= s′

holds that if ϑ(s) = 0 then ρ′(s, s′) = 0 and ρ′(s, s) = 1; ρ′(s, s′) = `(s, s′)/ϑ(s)
otherwise. Moreover, V is set of all parameters used in the rate expression in L.

Given the set of parameters V and a domain D(v) for each parameter v ∈ V,
the parameter space PPP induced by the set of parameters V is defined as the Carte-
sian product of individual parameter domains PPP =

�
v∈VD(v). A parametri-

sation p ∈ PPP is a |V|-tuple holding a single value for each parameter, i.e.
p = (v1p , . . . , v|V|p), assuming an arbitrary ordering on parameters.

For a pMC C, the set of DMTCs induced by the parameter space PPP is defined
as C = {Cp | p ∈ PPP}. For each Cp, all parameters in the probability matrix
are instantiated to respective components of p. A DTMC Cp is well-defined iff
ρ(s, s′) ∈ [0, 1] for all s, s′ ∈ S and

∑
s′∈S ρ(s, s′) = 1 for all s ∈ S. For every

pMC C we assume the set C contains only well-defined DTMCs.

s

s1 s2

k1 k2 × 2

s

s1 s2

k1
k1+k2×2

k2×2
k1+k2×2

Fig. 1. (left) A state s of pQLTS with all its outgoing edges, labelled with appropriate
multiset evaluation of rate function – state s1 was created by applying the rule 1 and
s2 by applying the rule 2. (right) A pMC constructed from the pQLTS on the right
such that the labels of both its outgoing edges are computed as the appropriate label
from pQLTS divided by the sum of all outgoing labels, which is k1 + k2 × 2. This, in
general, ensures the sum of all labels of outgoing edges for a state is always 1.

3.3 Example (continued)

Let M = ps1tlm(p700{n}, a{−}, achl{+}), ps2tlm(p700{n}, a{n}, achl{∗}) be a multi-
set consisting of two ps agents differing in the state of their atoms a and achl,
and their complex ID. We show how application of two rules from the previous
example modify the multiset M.
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Applying the rule 1 changes states of the first ps agent and creates a multiset
M1 = ps1tlm(p700{+}, a{−}, achl{n}), ps2tlm(p700{n}, a{n}, achl{∗}). The label of
the transition is multiset evaluation of rate function, f(M), which is k1 × 1.
([psxtlm(p700{n}, achl{+})] = 1).

Applying the rule 2 forms a complex from both agents and creates a multiset
M2 = ps1tlm(p700{n}, a{−}, achl{+}), ps1tlm(p700{n}, a{n}, achl{∗}). The label of
the transition is multiset evaluation of rate function, f(M), which is k2 × 2× 1.
([psxtlm(∅)] = 2, [psytlm(∅)] = 2). Please note the instantiation of variables in rate
functions is independent on the instantiation of left-hand side of the rule.

Both applications give rise to a simple pQLTS, from which a pMC can be
constructed (Fig. 1).

4 Model Analysis

We now provide algorithms for parameter synthesis and robustness problems for
qBCSL models. Both algorithms are done semi-symbolically.

4.1 Parameter synthesis

Given a qBCSL model M = (R, σT, σA,M0,V) and a PCTL formula φ, the
problem of parameter synthesis is to compute a partitioning of parameter space
into three disjoint subsets: TRUE – the model satisfies the property, FALSE – the
model does not satisfy the property, and UNKNOWN – the result is not known.

We solve this problem in three steps – (1) we construct pQLTS for the given
qBCSL model by transitive closure of inference rule starting from initial state;
(2) we derive a pMC from the pQLTS by computing parametric transition prob-
ability matrix as a normalisation of the label for all outgoing edges for every
state; (3) we apply a method introduced in [16] and elaborated in [22], which is
very similar to the model checking of DTMC outlined in preliminaries.

The Finite State Automaton for a pMC and a path formula is derived as
in the non-parametric case. The regular expression is also evaluated recursively.
Operators of union, concatenation, and star on regular expressions, are replaced
by addition, multiplication, and inversion for rational functions respectively.
Thus, by evaluating the corresponding regular expression, we obtain an alge-
braic expression of the probability measure of the sets of paths satisfying a path
formula, as a rational function of parametrisations. We can use the result to
check whether the system satisfies a formula for different values of the parame-
ters, without having to model check the system for any given parametrisation.

This method is applicable to formulas without nested probabilistic operators
only, but this does not represent a strong restriction in practice because such
formulas are usually not needed to specify the properties of interest.

The computed rational function is used in parameter space exploration. An
SMT solver (e.g., Z3) can be used to determine whether there exists a parametri-
sation inside the candidate region of the parameter space whose corresponding
instantiated DTMC exceeds a given threshold on the probability.

The general approach is to maintain a set UNKNOWN of regions for which
the result is still unknown. Initially, it is represented as the whole parameter
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space PPP . Then, it takes a region out of this set and tries to decide its value.
The answer can be definite, i.e. either the region satisfies the formula φ and is
added to set TRUE or it does not satisfy the formula φ is added to set FALSE;
or the answer is uncertain and the region is split into smaller subregions. This
can be recursively executed until the required precision is met (e.g., coverage of
the decided area, a boundary in recursion depth).

For a PCTL formula φ, we additionally consider a set of atomic propositions
AP′ such that the expressions of type [a] ./ n are extended to a ∈ P. These
formulae allow to reason about patterns which is very natural in the rule-based
setting. The semantics of the expression is:

s |= [a] ./ n iff
∑
I∈Γ

s(I〈a〉) ./ n

In order to use the instantiation, the signatures are required. These are avail-
able in the qBCSL model.

We have implemented our approach in the prototype tool eBCSgen, which
can generate explicit pMC straightforwardly represented as a PRISM model [32].
The only issue is the presence of patterns allowed in atomic propositions of
the PCTL property. Since a pattern basically compactly represents all possible
instantiated agents (resp. multisets), it can be expressed as a sum of these agents.
To that end, we introduce formulas which encode the sum in the PRISM model.
Once defined, properties operating with their identifier (in our case the pattern
itself) are valid.

Then, we employ Storm, which for a PRISM model, PCTL formula, and given
parameter space returns the partitioning of the space to required areas (using
storm− pars). In addition, the tool uses parameter lifting optimisation [40],
which improves the state-elimination approach. We apply a simple visualisation
to show the result of partitioning graphically.

4.2 Robustness analysis

The problem of global robustness [31] of a system s is defined as

Rsa,P =

∫
P

ψ(p)Ds
a(p)dp

where a is the property of the system under scrutiny, P is the set of all pertur-
bations, ψ(p) is the probability of the perturbation p, local robustness Ds

a(p) is
a measure stating how much the property a is preserved in perturbation p. The
local robustness returns for each parameterisation p ∈ P the quantitative model
checking result for the respective DTMC (built for the parameterisation p) and
the given property a.

We solve this problem for given qBCSL model M and a PCTL property φ
(with the outermost operator Π=?). We construct pMC from the model followed
by algorithm from [16] to compute the rational function f . Function f can be
directly used for evaluation of the local robustness.
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We consider the parameter space PPP as the set of all perturbations. Since each
parameterisation p ∈ PPP has uniform probability, computing ψ(p) is straightfor-
ward – it is inversely proportional to the volume of the entire parameter space.
Considering all the assumptions, the robustness for the qBCSL modelM and a
property φ is computed as RMφ,PPP =

∫
PPP

1
|PPP |f(p)dp.

We have used Storm to obtain the rational function f and package scipy [29]
to compute the definite integral of the function in the assumed parameter space.
Moreover, since it is possible some discontinuities are present in the function f ,
we first analyse them using package sympy [36] and then integrate without these
particular points.

KaiCxcyt(S{u}),KaiC
x
cyt(S{u})

kcat1×[KaiA2
y
cyt(∅)])

(Km+[KaiCxcyt(S{u}),KaiC
x
cyt(S{u})])−−−−−−−−−−−−−−−−−−−−−−−→ KaiCxcyt(S{p}),KaiC

x
cyt(S{p})

KaiCxcyt(T{u}),KaiC
x
cyt(T{u})

kcat3×[KaiB4
y
cyt(act{a}),KaiA2

y
cyt(∅)])

(Km+[KaiCxcyt(T{u}),KaiC
x
cyt(T{u})])−−−−−−−−−−−−−−−−−−−−−−−→ KaiCxcyt(T{p}),KaiC

x
cyt(T{p})

KaiCxcyt(S{p}),KaiC
x
cyt(S{p})

kcat2×[KaiA2
y
cyt(∅)])

(Km+[KaiCxcyt(S{p}),KaiC
x
cyt(S{p})])−−−−−−−−−−−−−−−−−−−−−−−→ KaiCxcyt(S{u}),KaiC

x
cyt(S{u})

KaiCxcyt(T{p}),KaiC
x
cyt(T{p})

kcat4×[KaiB4
y
cyt(act{a}),KaiA2

y
cyt(∅)])

(Km+[KaiCxcyt(T{p}),KaiC
x
cyt(T{p})])−−−−−−−−−−−−−−−−−−−−−−−→ KaiCxcyt(T{u}),KaiC

x
cyt(T{u})

KaiB4xcyt(act{i})

kcatb2×[KaiB4xcyt(act{i})]
Kmb2+[KaiB4xcyt(act{i})]−−−−−−−−−−−−−−−−→ KaiB4xcyt(act{a})

KaiB4xcyt(act{a})

kcatb1×[KaiB4xcyt(act{a})]
Kmb1+[KaiB4xcyt(act{a})]−−−−−−−−−−−−−−−−→ KaiB4xcyt(act{i})

KaiCxcyt(∅),KaiC
y
cyt(∅)

kdimer×[KaiCxcyt(∅)]×([KaiC
y
cyt(∅)]−1)

−−−−−−−−−−−−−−−−−−−−−−−→ KaiCxcyt(∅),KaiC
x
cyt(∅)

KaiCxcyt(∅),KaiC
x
cyt(∅)

kdimer×[KaiCxcyt(∅),KaiC
x
cyt(∅)]−−−−−−−−−−−−−−−−−−→ KaiCxcyt(∅),KaiC

y
cyt(∅)

Fig. 2. Rules of simplified Miyoshi et al. model. The first four rules are responsible
for the change of phosphorylation level of KaiC dimers. The rate functions of these
rules represent enzymatic laws and are dependent on current numbers of KaiA dimers
and KaiB tetramers. The next two rules change the activity level of KaiB4 complex
and the last two rules form and disassembly the KaiC dimer. The particular values
of known constants are Km = 0.602, Kmb1 = 2.423, kcatb1 = 0.602, kdimer = 1.77,
Kmb2 = 66.75, and kcatb2 = 0.346. The exact meaning of individual constants and
parameters is described in [37]

5 Case study

In this section, we demonstrate our contribution on a case study2 from the
biological domain. Miyoshi et al. [37] ODE model describes circadian rhythms
in cyanobacteria. We have adopted this model to our rule-based formalism with
several simplifications in order to avoid combinatorial explosion.

The core of the circadian rhythms model is formed by three main proteins
– KaiA, KaiB, and KaiC. The protein KaiC has two phosphorylation sites (S –
serine and T – threonine), both of them can be either phosphorylated or un-
phosphorylated. Two KaiC proteins can form a homo-dimer.

2 An additional case study targeting a tumour growth is available in Appendix A.
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Protein KaiA can also form a homo-dimer and act as a kinase for phosphory-
lation of KaiC dimers. Since the KaiA dimer cannot undergo any modification,
we model it as a single agent. Protein KaiB can form a homo-tetramer, which
can be either active or inactive as a whole. For this reason and, again, for the
simplicity, we model it as a single agent.

The KaiA dimer has a positive enzymatic effect on the phosphorylation of
KaiC dimers. On the other hand, active KaiB tetramer then serves as an in-
hibitor of KaiC dimer phosphorylation, i.e. it enhances its dephosphorylation.
This is done such that it forms a complex with KaiA dimer and inhibits its
phosphorylation efforts.

1. Phosphorylation experiment

(a) initial state:

KaiC1
cyt(S{u},T{u}),KaiC2

cyt(S{u},T{u}),KaiB43cyt(act{a}),KaiA24cyt(∅)
(b) property of interest :

Π≥0.99(True U [KaiCxcyt(S{p},T{p}),KaiCxcyt(S{p},T{p})] > 0)

(c) parameters:

kcat1 ∈ [0, 1] kcat2 = 0.539 kenz = 8.756× 10−4

kcat3 ∈ [0, 2] kcat4 = 0.89

(d) additional rule for construction of KaiA dimer and KaiB4 tetramer complex:

KaiB4xcyt(∅),KaiA2
y
cyt(∅)

kenz×[KaiB4xcyt(∅)]×[KaiA2
y
cyt(∅)]−−−−−−−−−−−−−−−−−−−−→ KaiB4xcyt(∅),KaiA2

x
cyt(∅)

2. Dephosphorylation experiment

(a) initial state:

KaiC1
cyt(S{p},T{p}),KaiC2

cyt(S{p},T{p}),KaiB43cyt(act{a}),KaiA23cyt(∅)
(b) property of interest :

Π≥0.99(True U [KaiCxcyt(S{u},T{u}),KaiCxcyt(S{u},T{u})] > 0)

(c) parameters:

kcat1 = 0.539 kcat2 ∈ [0, 1] kenz = 8.756× 10−4

kcat3 = 1.079 kcat4 ∈ [0, 2]

(d) additional rule for disassembly of KaiA dimer and KaiB4 tetramer complex:

KaiB4xcyt(∅),KaiA2
x
cyt(∅)

kenz×[KaiB4xcyt(∅),KaiA2
x
cyt(∅)]−−−−−−−−−−−−−−−−−−−→ KaiB4xcyt(∅),KaiA2

y
cyt(∅)

Fig. 3. Two setups of the Miyoshi model in qBCSL. The goal of the experiment (1) is
to find parametrisation such that the model reaches the fully phosphorylated level of
KaiC dimer. The model is extended by a rule for the construction of complex possibly
disabling the phosphorylation. The experiment (2) is focused on dephosphorylation of
KaiC dimer enabled by an additional rule for the enzymatic complex disassembly.

The rules of the model are available in Fig. 2. The mechanism of phosphory-
lation and activation causes the model to have an oscillatory behaviour. For our
simplified case, we investigate whether the probability of reaching the phospho-
rylated KaiC dimer followed by reaching the unphosphorylated dimer is close to
one.

We assume two different experiments both having different initial conditions,
one additional rule for manipulation of KaiA and KaiB interaction, different un-
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known parameters, and finally a different property of interest. Both experiments
are specified in Fig. 3. The first experiment expresses conditions with unphospho-
rylated KaiC dimer and property of reaching the phosphorylated KaiC dimer.
For the second experiment, it is the other way around. The probability for both
properties should be close to one since the oscillation should always be present.

Fig. 4. Visualisation of results of parameter synthesis for the Miyoshi model. The
left picture depicts the results for the phosphorylation experiment (Fig. 3, 1). The
horizontal axis represents values of the parameter kcat1 ∈ [0, 1] and the vertical axis
represents values of the parameter kcat3 ∈ [0, 2]. The right picture depicts the results
for the dephosphorylation experiment (Fig. 3, 2). The horizontal axis represents values
of the parameter kcat2 ∈ [0, 1] and the vertical axis represents values of the parameter
kcat4 ∈ [0, 2].

In Fig. 4, there is a visualisation of parameter synthesis for both cases. The
results of the first experiment show that the property is almost always satisfied
except for some marginal cases when the parameter values are close to zero.
This fact is in agreement with the global robustness degree, which is approxi-
mately 0.995. In the second experiment, the property was satisfied in a smaller
fraction of parameter space, caused by different initial conditions and the ad-
ditional rule. However, this difference is very insignificant, which confirms the
robustness degree with a value of approximately 0.98. These results confirm that
the behaviour of the model is very robust to perturbation of parameters directly
responsible for phosphorylation activity, thus showing the oscillatory behaviour
is very persistent.

6 Conclusions

First, we have defined a quantitative version of the Biochemical Space Language
(qBCSL). The language allows us to specify parametrised quantitative aspects
(rates) of the dynamics of individual rules, resulting in probabilistic behaviour
of models considered in discrete time. Second, we have encoded the semantics of
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qBCSL models by means of parametric Markov Chains. That enables applica-
tions of existing symbolic parameter synthesis methods. Finally, we have shown
how to (exactly) compute robustness of a given property with respect to a given
parameter perturbation. Bridging the efficient parameter synthesis methods with
rule-based modelling is an important step towards application of formal methos
in biological domain [7,10]. To that end, we have demonstrated our approach on
a case study from the biological domain.

The main challenge to be faced in future is the scalability. Rule-based models
can expand in large state spaces making thus the construction of the pQLTS (and
pMC) infeasible. In particular, we want to find ways allowing to avoid enumer-
ation of the pMC, e.g., by employing on-the-fly and static analysis approaches.
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A Tumour growth

Tumour growth is based on mitosis (i.e. cell division). The cell cycle is the
process between two mitoses and it consists of four phases: the resting phase G1,
the DNA replication phase S, the resting phase G2, and the mitosis phase M in
which the cells segregate the duplicated sets of chromosomes between daughter
cells. The three phases G1, S, and G2 constitute the pre-mitotic phase, also
called interphase.

We have adopted the model of tumour growth [44] to our language. It con-
siders two populations of tumour cells: those in interphase and those in mitosis.
We represent the tumour cell as an agent T. The current phase is expressed with
an atom phase in its composition, which can have two different states – i for
interphase and m for mitosis. For simplicity, we omit the compartment from the
rules since it does not change and plays no important role in this model.

Tx(phase{i}) a1×[Tx(phase{i})]−−−−−−−−−−−→ Tx(phase{m})

Tx(phase{m}) a2×[Tx(phase{m})]−−−−−−−−−−−→ Ty(phase{i}),Tz(phase{i})

Tx(phase{i}) d1×[Tx(phase{i})]−−−−−−−−−−−→ ∅

Tx(phase{m}) d2×[Tx(phase{m})]−−−−−−−−−−−→ ∅

Fig. 5. Rules of the tumour growth model. The first rule describes the change of the
phase of a cell from interphase to mitosis. The second rule describes the duplication of
the cell to two daughter cells. Note that both start in interphase. The last two rules
describe the death of cells in both possible states.

The rules of the model are available in Fig. 5. Note that this model is a
demonstration where all rules are reaction-based, i.e. they do not describe an
abstract rule, only modification of concrete agents.

Given rate functions of rules are parametrised. Parameters a1 and a2 are
present in rules responsible for change of phase and cell division, while param-
eters d1 and d2 are in the rules where the cell disappears or dies. The values
a2 = 0.5 and d1 = 0.3 are constant the other two parameters are given by
admissible ranges: a1 ∈ [0; 3] and for d2 ∈ [0.001; 0.5].

For the initial state, we assume a single agent T1(phase{i}). Please note that
the model gives rise to infinite pMC since the second rule can generate additional
agents. To obtain a finite abstract probabilistic model, we have heuristically
limited the number of states of the model. Particularly, we generate all the
states having the number of individuals of both species less or equal to 5 and
we introduce a special abstract state which represents all the other states, which
limits the size of possible state space to 62. This approximation is incorrect only
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in cases when one wants to reach a state which is represented by the special
state.

Fig. 6. Visualisation of results of parameter synthesis (left) and quantitative model
checking using sampling (right) for property φ for tumour growth model. The horizontal
axis represents values of the parameter a1 ∈ [0, 3] and the vertical axis represents values
of the parameter d2 ∈ [0.001, 0.5]. The probability threshold 0.5 from the property φ is
visible in both sampling (approximately the yellow line) and parameter synthesis (the
grey line). It shows that the parameter synthesis method gives us a very precise result
and is in agreement with quantitative model checking.

We are interested in property whether the population of tumour cells will
reach almost its maximum with the probability higher than 0.5, meaning that
the growth is not random but has rather tendency to grow without limitations.
This property can be expressed as φ = Π≥ 0.5(True U Tj(∅) > 8). In Fig. 6,
there is a visualisation of parameter synthesis. The results show that the higher
values of the parameter a1 (cell division) and the lower values of the parameter
d2 increase the probability of property satisfaction. This result is quite expected,
because both parameters directly influence cell division (a1) and degradation (d2)
of cells. We have also computed the global robustness degree of the property,
which is approximately 0.24. It can be interpreted as 24% of parameter space
satisfies the property True U Tj(∅) > 8.
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