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Global Change Research Institute

Czech Academy of Sciences
Brno, Czech Republic

cerveny.j@czechglobe.cz

Abstract—Complex dynamics arising in biological systems can
be characterised by various kinds of attractors. To that end,
the task of determining attractors becomes important in modern
systems analysis. Biological systems are typically formalised as
highly parametrised continuous-time ODE models. Such models
can be abstracted in the form of parametrised graphs. In such
abstractions, attractors are observed in the form of terminal
strongly connected components (tSCCs). In this paper, we demon-
strate a novel method for detecting tSCCs in parametrised graphs
on several models of cyanobacteria taken from the domain-
specific online platform e-cyanobacterium.org.

Index Terms—attractors, parametrised graph, terminal
strongly connected components, cyanobacteria

I. INTRODUCTION

Molecular interactions in biological systems form complex
structures of negative or positive feedbacks. The interplay of
such interactions can emerge in behaviour that is hard to
predict. Systems behaviour in long time horizon may be signif-
icantly affected by concurrent flows of complex information.
Some of the problems related to the study of systems dynamics
can be significantly simplified if we concentrate on the long-
term behaviour. This idea finds its mathematical expression in
the concept of an attractor.

In general, attractors are of strong interest as they concen-
trate system states to which the dynamics converges or resides
there forever once reached. To that end, stable attractors
are important as they typically represent robust modes of
system’ dynamics. Several analysis techniques frequently used
in systems biology investigate a system in a stable attractor.
A typical example is flux balance analysis.

In general, an important problem of systems analysis is to
determine the number and position of attractors. Biological
systems are usually described by models represented as highly
parametrised differential equations (ODEs). Owing to the non-
linear character of these equations, dynamics of these models
is markedly sensitive to changes in parameters.

Methods that fully automatise analysis of attractors for a
given parameterisation are needed to ensure that models are
set and used correctly. Moreover, it is important to know
how attractors and their character change with parameters.
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This allows not only to identify parameter ranges where a
system behaves as expected in long-time horizon, but also to
investigate critical parameter values where the expected long-
time behaviour can be violated (e.g., the system changes the
number or shape of its attractors).

In [1] we have introduced a method that fully automatises
the analysis of attractors with respect to uncertain parameters.
The method utilises computer scientific techniques – formal
methods and graph algorithms – to identify attractors in non-
linear ODE models. In contrast to numerical (or analytic-
numerical) methods that work locally in terms of requiring
to know the approximate position of the attractor [2], our
approach works fully in the global scope. This is achieved
by computing over discrete abstractions of continuous dynam-
ics [3]–[5]. In the discrete setting, the problem is reduced
to identification of strongly connected components (SCCs)
in the graph (state-transition system) that over-approximates
the continuous systems dynamics [6]. It is worth noting that
identification of SCCs can be done efficiently for higher-
dimensional systems in the non-parametrised case [7]–[9].
However, in case of biological models, parameters are often
not completely known. Moreover, the parameter space ex-
plodes combinatorially with the arity of component influences
causing parameter uncertainty to result in enormously large
sets of parameter values. To that end, our approach provides a
heuristics and parallelisation that scale well with the number
of uncertain parameters.

In this paper, we present a case study of our algorithms
performed on several ODE models describing dynamics of
processes in cyanobacteria. To that end, we have selected
models implemented online on the e-cyanobacterium.org plat-
form [10]. E-cyanobacterium is a long-term project that aims at
the model-based and experimental investigation of biophysical
processes occurring in cyanobacteria. The crucial part of the
platform is model repository that provides a database of ODE
models developed by experts on cyanobacteria biophysics.
Automatised analysis of the models is the part of online
services offered by e-cyanobacterium.org. The focus is given
to simulation of model dynamics with respect to user-defined
parameters. It is highly important to provide users parameter
ranges where models behave correctly. Automated detection
of attractors and computing parameter values for which they



are present in the system thus makes one of the important
tasks making a part of the curation procedure of the systems
models implemented in the platform.

II. METHODS

The method as described in [1] assumes a parametrised
directed graph G = (V,E,P). Here, P represents the set of all
possible parameter valuations and each edge is augmented with
a set of parameter valuations which enables it, E ⊆ V ×P×V .
In this section, we first show how this parametrised graph
is constructed from a set of continuous differential equations
and then discuss how such graph can be used to reason about
attractors in the original system.

The process starts with a non-linear ODE model. This model
is transformed into a piece-wise multi-affine approximation
which can be safely over-approximated by a rectangular ab-
straction procedure. The result is a parametrised graph that
is searched using a divide-and-conquer algorithm in order to
obtain all terminal strongly connected components (tSCCs).
Such components then over-approximate the attractors in the
piece-wise multi-affine system.
Model. We consider P ⊆ Rm to be a bounded continu-
ous parameter valuation space of dimension m. A biolog-
ical ODE model M is given as a system of autonomous
ordinary differential equations of the form ẋ = f(x, µ).
Here, x = (x1, . . . , xn) ∈ Rn is a vector of variables,
µ = (µ1, . . . , µm) is a vector of parameters such that µ is
evaluated in P, f = (f1, . . . , fn) is a vector of derivation
functions Rn ×Rm → R, and we require each fi to be affine
in µ. Finally, we assume each variable xi is bounded within an
interval [xmin

i , xmax
i ] and that no trajectory exits this interval,

formally ∀p ∈ P,∀i ∈ {1, . . . , n} : (xi = xmin
i ⇒ fi(x, p) >

0) ∧ (xi = xmax
i ⇒ fi(x, p) < 0).

Since these restrictions allow f to be non-linear in x,
they are satisfied by the majority of available models with
appropriate bounds. This includes models representing variants
of enzyme or Hill kinetics where parameters are independent
and do not appear in an exponent or a denominator of a kinetic
function.
Approximation. To proceed with the discretisation, the model
ẋ = f(x, µ) has to satisfy the criterion that every fi is
piecewise multi-affine (PMA) in x. To transform the model
into this form, we employ the approach defined in [5]. In par-
ticular, each non-linear member in fi is approximated with an
optimal sequence of piece-wise affine ramp functions. During
this procedure, a finite number of thresholds is introduced for
every component of x.

The crucial factor of the approximation error is the number
of piece-wise affine segments. Though there is not yet a
method that would somehow propagate the information on
approximation error into the trajectories of the resulting PMA
model, it has been shown on several case studies that suffi-
ciently fine approximation does affect the system’s vector field
only negligibly [5], [10].
Abstraction. We employ the rectangular abstraction [3], [5]
in order to transform a piece-wise multi-affine ODE model

into a discrete parametrised graph. For each variable xi, we
assume a set of thresholds θ1i < θ2i < . . . < θni−1

i < θni
i

such that θ1i = xmin
i and θni

i = xmax
i (these typically

come from the approximation procedure, but can be also
introduced by the user). This set of thresholds partitions the
admissible space into n-dimensional intervals called rectan-
gles. Each rectangle is uniquely represented by an n-tuple
R(j1, . . . , jn) = [θj11 , θ

j1+1
1 ] × . . . × [θjnn , θ

jn+1
n ] where each

ji ∈ {1, . . . , ni−1}. We also define VR(j1, . . . , jn) to be the
set of all vertices of R(j1, . . . , jn). Finally, in every rectangle,
we expect each fi to be multi-affine in x and affine in µ.

The abstraction results in a symbolic description of a
parametrised graph, G = (V,E,P) where V = {(j1, . . . , jn) |
ji ∈ {1, . . . , ni − 1}} such that each v ∈ V represents one
rectangle R(v). We then say that u ∈ V is above v ∈ V
in dimension i if ui = vi + 1 and for all j 6= i, uj = vj .
Symmetrically, u is below v in dimension i if ui = vi−1 and
for all j 6= i, uj = vj .

An edge u
p→ v is then created for each p ∈ P such that

• u is above v in dimension i and there exists x̂ ∈ V R(u)∩
V R(v) such that fi(x̂, p) < 0;

• u is below v in dimension i and there exists x̂ ∈ V R(u)∩
V R(v) such that fi(x̂, p) > 0.

Additionally, there is a self-loop defined for any u ∈ V and
p ∈ P such that ∀p ∈ P : 0 ∈ {f(x̂, p)|x̂ ∈ hull(V R(u))}.

A subset P ⊆ P of parameter values is associated with every
edge denoting the situations under which the corresponding
transition is enabled. Finite number of thresholds implies finite
number of distinct parameter sets that can appear on transitions
in the model. In consequence, total number of parameter sets
for an abstraction of model M, denoted |P|M|, is finite.

The existence of a fixed point in a system can be ap-
proximated by the rectangular abstraction. This is achieved
conservatively by introducing a self-edge for every rectangle
such that there is a zero vector included in the convex hull of
all vertices of the rectangle. This is a necessary condition for
the existence of a point where the derivatives in all coordinates
are zero. Under this setting, it has been shown that rectangular
abstraction is conservative (overapproximation) with respect to
almost all trajectories of the approximated (PMA) model [11].

The conservativeness of the abstraction together with the
consideration of only those parameter values for which the
dynamics are bounded imply that every tSCCs in the abstrac-
tion must cover at least one attractor in the PMA system.
This also implies that the number of discovered tSCCs in the
abstraction is a lower bound for the number of attractors in
the corresponding PMA system and that their location is over-
approximated by the location of the tSCCs. While this allows
us to bound the attractor in a specific region of the state space,
it does not provide information about the analytical nature of
the attractor (equilibrium, limit cycle, chaotic attractor, etc.).

Component search.
Once a parametrised graph is constructed, it can be investi-

gated using our parallel tSCC detection algorithm proposed
in [1]. The algorithm works by selecting a pivot vertex u



and dividing the vertices of the graph into three subsets: The
first set contains tSCCs reachable from u, the second set
contains tSCCs not reachable from u, and the third set contains
vertices which do not belong into any tSCC. The algorithm
then recursively proceeds in first two sets until pivot itself
belongs into a tSCC.

The efficiency of this procedure relies on a combination
of symbolic and parallel approach. The parameter valuation
sets are represented symbolically, providing a compact repre-
sentation of the parameter space while the sets of rectangle
vertices remain explicit, allowing parallel and even distributed
computation. Implementation is now available in the tool
Pithya [12].

III. E-CYANOBACTERIUM PLATFORM

E-cyanobacterium [13] is a framework serving for analysis,
visualisation, annotation, and public sharing of mathematical
models and biological experiments concerning the biochem-
istry of cyanobacteria. The framework integrates abstract dy-
namical models with Biochemical Space (BCS) – a detailed
rule-based biochemical description. The framework includes
several modules that foster the presentation and creation of the
models. The general goal is to connect biological knowledge
with the profits of computational systems biology tools.
Model Repository makes a crucial part of the platform. It is
represented by a database of the models describing biological
processes. Reaction network of each model is transformed into
a set of ordinary differential equations (ODEs). To represent
multiple biological scenarios and to enable analyses with
particular settings, the model is associated with data sets
(parameter values).

The model reaction network is composed by a set of
components and a set of reactions. Every reaction describes
interactions of a subset of specified components with a given
reaction rate. For better scalability and usability, the rate can
be specified as a mathematical expression using a predefined
set of parameter constants or assignments. An important part
of the model is annotation which increases its reliability and
information gain.

It is possible to change initial conditions and parameter
constants of the model and set the simulation options (the
numerical solver, simulation time, etc.) in a so-called data set.
The simulations can be run online and the time-series plot is
generated for all available datasets. In the plot, it is possible to
alter the type of the axes, select particular curves, zoom, and
display a value on a curve. Simulation data export is equipped
by multiple data formats.

Additionally, static analysis implements the following three
tasks: modes analysis producing elementary flux modes, con-
servation analysis producing mass conservation analysis (moi-
ety conservation), and matrix analysis producing stoichiometry
matrix. For all the tasks, the well-acclaimed third-party tool
COPASI [14] is used to enable downloading the results in an
SBRML file [15].

Models are integrated within BCS which ensures that all
parts of the model are enriched by the biological annotation.

This can help to interlink models by overlapping parts among
them. Additionally, a model can also be related to a wet-lab
experiment which can support relevance and credibility of the
model.

In the following sections, we briefly describe four non-
linear models from the repository which will be analysed using
techniques described in Section II.

Clark model [16] describes the fluxes of inorganic carbon
from cytosol to carboxysome of cyanobacteria and its fixation
using carbonic anhydrase and RuBisCO enzyme.

Carbon dioxide concentrating mechanism (CCM) of
cyanobacteria consists of structural enzymes and proteins that
enable the increase of the local concentration of CO2 around
the carbon-fixing enzyme RuBisCO (ribulose-1,5-bisphosphate
carboxylase/oxygenase) up to three orders of magnitude.
Cyanobacterial growth in a native aqueous environment with
low concentrations of CO2 is enabled by the mechanism. The
mechanism is described by the model and it is shown that the
CCM is not necessary for growth in media in equilibrium with
concentration of 10% CO2 (which is available in industrial
flue gas). Since the proteins involved in the CCM are quite
large (i.e. costly to synthesise), the elimination of their pro-
duction in an environment with high-CO2 concentration could
provide an important metabolic benefit to cyanobacteria.

The model has four variables: CO2 cyt (carbon dioxide in
cytosol) in the range [0, 0.0001], HCO3 cyt (hydrogencarbon-
ate in cytosol) in the range [0, 0.1], CO2 carb (carbon dioxide
in carboxysome) in the range [0, 0.001], and HCO3 carb
(hydrogencarbonate in carboxysome) in the range [0, 0.1].
Moreover, there is a parameter fast which affects rate of
carbon fixation reaction1 in the range [1, 500] h−1 (from very
slow to very fast).

All variables had 40 thresholds, which produced the state
space of size approximately 2.5× 106 discrete states.

Grimaud model [17] describes the time-dependent dynamics
of diazotrophy in a unicellular cyanobacterium, Crocosphaera
watsonii WH8501, with respect to obligate diazotrophy and
light limitation.

The model is divided to into several pools. An intercellular
pool describes the nitrogenase enzyme. An intracellular nitro-
gen and carbon are both divided into a storage and a functional
pool. A very complex dynamics of the model are driven by the
light regime and the various intracellular nitrogen and carbon
flow between these pools. The model dynamics are validated
with cultures experiments of C. watsonii under different light
regimes, showing that the proposed mechanisms reproduce the
growth dynamics of this organism. The model demonstrates
how nitrogen and carbon are coupled along with nitrogenase
activity constrained by the light regime.

The model has four variables: Cnit (nitrogenase pool) in
range [0, 1], Nr (nitrogen storage pool) in the range [0, 200],
Cr (carbohydrates pool) in the range [0, 400], and Cf (func-
tional carbon pool) in the range [0.001, 1000]; and three

1Carbon fixation is the conversion process of inorganic carbon (carbon
dioxide) to organic compounds by living organisms.



assignments Ctot (total carbon of C. watsonii), Ntot (total
nitrogen of C. watsonii), and Nf (functional nitrogen pool),
with meaning of sums of some of the variables. Additionally,
there is a parameter r2 expressing the maximum carbon
fixation rate considered in the range [0.09, 0.825] h−1 and
parameter r4 expressing nitrogenase synthesis rate allowed in
the range [0.00031, 0.00279] h−1.

Finally, since the model is not autonomous, we consider
time as an additional variable with the derivative set to 1 and
bound by an interval of [0, 200]. This is a reasonable approach
since the model itself behaves periodically (with a period of
24 time units), hence this gives us an over-approximation of
the attractor after a little more than 8 time periods.

All variables had 10 thresholds except Cf with 40 thresholds
and time with 20. Together it produced the state space of size
approximately 5.5× 105 discrete states.

Müller model is a prototype version of the dynamical model
of carbon fluxes in a laboratory scale photobioreactor (e.g.
intercellular exchange, carbonate chemistry, and gas-to-liquid
CO2 transfer).

To identify maximum production rates of biofuels or
biomass and to reason about the cellular mechanisms of carbon
fixation, all CO2 related exchange rates of a photosynthetic
culture can be estimated by the model. The model aspires
to become a part of a project for the design of upscaled
bioreactors to industrial level.

The model consists of seven variables: OH− (hydroxide)
in the range [0, 1], H + (proton) in the range [0, 1], CO2−
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(carbonate) in the range [0, 50], HCO−3 (hydrogencarbonate)
in the range [0, 3000], CO2 (carbon dioxide) in the range
[0, 150], HA (Brønsted acid) in the range [7000, 10000], and
A (Brønsted base) in the range [0, 7000]. There is a parameter
kLa CO2 eff expressing volumetric mass transfer coefficient
from gas headspace to medium allowed in the range [10, 200].

All variables had 10 thresholds, which produced the state
space of size approximately 4.7 · 106 discrete states.

Plyusnina model is an incomplete model of electron trans-
port on thylakoid membrane of cyanobacteria. The model
is unfinished, yet exhibits interesting properties suitable for
demonstration of our analysis methods.

The specific feature of electron transport on thylakoid
membrane of cyanobacteria is a combination of photosynthetic
and respiratory pathways in one reaction space, connected
through plastoquinone pool (PQ). To couple the electron
transfer in thylakoid membrane with metabolic reactions of
central metabolism, the model considers influx and outflux
of NAD(P)H and ATP in cytoplasm in simple form. For
every complex redox reaction two abstract states are used – a
more oxidized (with index ‘o’) and a more reduced (with index
‘r’). Although such consideration is rather rough, it allows to
represent electron pathways in the most simple form and to
reflect the main features and stoichiometry of redox reactions.

The model consists of eight variables: Hi and Ho (different
types of proton) both in range [0, 10], ATP (adenosine triphos-
phate) in the range [0, 1], NADH (nicotinamide adenine din-

ucleotide) in the range [0, 1], NADPH (dihydronicotinamide-
adenine dinucleotide phosphate) in the range [0, 1], pqh2
(plastoquinol) in range [0, 1], fd (ferredoxin) in the range [0, 2],
and pc (plastocyanin) in the range [0, 2]. There are no unknown
parameters considered in the model.

All variables had 8 thresholds, which produced the state
space of size approximately 5.7 · 106 discrete states.

IV. RESULTS

The results of Terminal Component Detection analysis for
all of the models from Section III are described subsequently
in the following paragraphs. Since the amount of computed
data is extremely large and multi-dimensional, we provide sev-
eral manually obtained visualisations of the most interesting
findings. The complete data are available for download2.

Fig. 1. Visual representation of the dependence of variable HCO3 carb
on the value of parameter fast in the Clark model. The attractor (green) is
changing with the value of the parameter.

Clark model. The analysis has shown there is a single
attractor. Fig. 1 shows the attractor level of HCO3 carb
with respect to the changes of the parameter fast representing
carbon fixation rate. The result is in agreement with the
expected system behaviour because fast has a crucial impact
on the system dynamics. In particular, the interpretation is that
the concentration of HCO3 kept in carboxysome decreases
with the parameter. This correlates with behaviour of CO2, as
shown in Fig. 2 – the long time CO2 carbon form residing in
carboxysome increases with fast.

The full dimensional attractor is enclosed within the
following rectangular region: CO2 cyt [8× 10−6, 10−5] ×
HCO3 cyt [6× 10−7, 2× 10−5] × CO2 carb[2× 10−6, 10−3] ×

2http://biodivine.fi.muni.cz/paper/ICSTCC2018/results.zip



Fig. 2. Visual representation of the dependence of variable HCO3 cyt on the
value of parameter fast in the Clark model. The attractor (green) is changing
with the value of the parameter.

HCO3 carb[3× 10−8, 2× 10−6]. However, the computed re-
sults have shown that the actual shape of the attractor does
not fill the entire volume of this region. In particular, it covers
approximately 8% of the volume of this region.

Grimaud model. The analysis has shown there is a single at-
tractor. As expected, the attractor resides in the last considered
time interval, since the time is monotonous. An interesting
fact is that the attractor is independent on both considered
parameters (for example, see Fig. 3). It is in contrast with the
case of the Clark model which showed an intense dependence
on the respective parameter. However, the models cannot be
directly compared due to the different levels of abstraction and
different modelling approaches (the Grimaud model describes
the whole carbon and nitrogen pools instead of individual
chemical objects).

The size of the model makes the visualisation of the attractor
in two dimensional space almost impossible. The attractor is
enclosed in the following rectangular region: Cnit [0, 0.1] ×
Nr [0, 88.8]×Cr [0, 44.4]×Cf [10

−3, 318.32] and the shape of
the attractor is very regular, thus its volume is practically equal
to the volume of the rectangular region. Additionally, a slice
of the attractor state space is presented in Fig. 4.

Müller model. The analysis has shown there is a single
attractor. Additionally, the analysis has shown that the pa-
rameter kLa CO2 eff expressing volumetric mass transfer
coefficient from gas headspace to medium has no influence
on the attractor position and shape (see Fig. 5 for the two-
dimensional projection of the computed attractor).

Fig. 3. Visual representation of the independence of variable Cf (functional
carbon pool) on the value of parameter r2 (carbon fixation rate) in the
Grimaud model. The attractor (green) remains the same regardless of the
value of the parameter.

Fig. 4. Visualisation of a slice of the state space for the variables Cr and Cf in
the Grimaud model. Green region represents states which belong to the attrac-
tor. The values of the remaining variables are fixed to Nr ∈ [44.44, 66.66]
and Cnit ∈ [0, 0.111].

The attractor is spread on entire rectangular state space cor-
responding to the entire admissible space. In full dimensions,
the actual attractor has a very complex shape and it covers
less than 8% of the volume of this space.



Fig. 5. Visualisation of a slice of state space for variables CO2−
3 and HCO−

3
in Müller model. Green regions represent states which belong to the attractor.
The values of the rest of the variables are arbitrary except OH−, which is
in the range [0.111, 0.222].

Plyusnina model. Since there are no unknown parameters in
the model, we have run the attractor analysis for the particular
parametric valuation resulting in a single attractor. However,
the shape of the attractor is extremely complex to be effectively
visualised.

The attractor is spread almost on the entire rectangular state
space. However, the shape of the attractor is very complex and
does not cover the entire state space, only approximately 47%.

V. DISCUSSION

We have shown an application of our recently developed
attractor detection method to several dynamical models de-
scribing biophysics of cyanobacteria. On the theoretical side,
the main advantage of the method is the ability to detect
attractors without precise knowledge of systems behaviour or
even its parameters. On the practical side, the used imple-
mentation of the method relies on rectangular abstraction that
approximates the dynamics of an ODE system in case it is
non-linear. Combining both aspects gives us a unique fully
automatised algorithm for attractor analysis that performs well
on typical dynamical models used in biophysics.

It is worth noting that our algorithm adapts the known
parallel algorithms [18] to the parametrised setting and adds
the possibility to accelerate the computation if only the number
of tSCCs is requested without the need to enumerate the
attractors. In consequence, deploying it to high-performance
platforms allows us to analyse complex multi-dimensional
systems under non-trivial parameter uncertainty.

The case study conducted in this paper has covered a variety
of non-linear models differing in dimension and number of

unknown parameters. In case of well-developed models that
are already accepted and used in the domain of cyanobacteria
systems biology, the obtained results are in agreement with the
expectations of the modellers. In case of incomplete models,
the results make an interesting feedback to the modellers and
thus make an important input for the model tuning and curation
procedure.
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[1] J. Barnat, N. Beneš, L. Brim, M. Demko, M. Hajnal, S. Pastva, and
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and D. Šafránek, “Abstraction of biochemical reaction systems on
polytopes,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 14 869–
14 875, 2011.

[5] R. Grosu, G. Batt, F. H. Fenton, J. Glimm, C. L. Guernic, S. A. Smolka,
and E. Bartocci, “From cardiac cells to genetic regulatory networks,” in
CAV’11, ser. LNCS, vol. 6806, 2011, pp. 396–411.

[6] D. Sullivan and R. Williams, “On the homology of attractors,” Topology,
vol. 15, no. 3, pp. 259–262, 1976.

[7] T. Chatain, S. Haar, L. Jezequel, L. Paulevé, and S. Schwoon, “Charac-
terization of reachable attractors using petri net unfoldings,” in CMSB
2014, ser. LNCS, P. Mendes, J. O. Dada, and K. Smallbone, Eds., vol.
8859. Springer, 2014, pp. 129–142.

[8] S.-M. Choo and K.-H. Cho, “An efficient algorithm for identifying
primary phenotype attractors of a large-scale boolean network,” BMC
Systems Biology, vol. 10, no. 1, p. 95, 2016.

[9] W. Guo, G. Yang, W. Wu, L. He, and M. Sun, “A parallel attractor
finding algorithm based on boolean satisfiability for genetic regulatory
networks,” PLOS ONE, vol. 9, no. 4, pp. 1–10, 2014.
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